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The late-stage demixing following spinodal decomposition of a three-dimensional
symmetric binary fluid mixture is studied numerically, using a thermodynamically
consistent lattice Boltzmann method. We combine results from simulations with
different numerical parameters to obtain an unprecedented range of length and time
scales when expressed in reduced physical units. (These are the length and time units
derived from fluid density, viscosity, and interfacial tension.) Using eight large (256%)
runs, the resulting composite graph of reduced domain size | against reduced time
t covers 1 <1 < 10°, 10 < t < 108 Our data are consistent with the dynamical
scaling hypothesis that [(t) is a universal scaling curve. We give the first detailed
statistical analysis of fluid motion, rather than just domain evolution, in simulations
of this kind, and introduce scaling plots for several quantities derived from the fluid
velocity and velocity gradient fields. Using the conventional definition of Reynolds
number for this problem, Re, = [dl/dt, we attain values approaching 350. At
Rey 2 100 (which requires t 2 10°) we find clear evidence of Furukawa’s inertial
scaling (I ~ t*/3), although the crossover from the viscous regime (I ~ t) is both broad
and late (10> < t < 10°%). Though it cannot be ruled out, we find no indication that
Re, is self-limiting (I ~ ¢'/?) at late times, as recently proposed by Grant & Elder.
Detailed study of the velocity fields confirms that, for our most inertial runs, the RMS
ratio of nonlinear to viscous terms in the Navier—Stokes equation, R, is of order
10, with the fluid mixture showing incipient turbulent characteristics. However, we
cannot go far enough into the inertial regime to obtain a clear length separation of
domain size, Taylor microscale, and Kolmogorov scale, as would be needed to test
a recent ‘extended’ scaling theory of Kendon (in which R, is self-limiting but Rey
not). Obtaining our results has required careful steering of several numerical control
parameters so as to maintain adequate algorithmic stability, efficiency and isotropy,
while eliminating unwanted residual diffusion. (We argue that the latter affects some
studies in the literature which report [ ~ t*3 for t < 10*) We analyse the various
sources of error and find them just within acceptable levels (a few percent each) in
most of our datasets. To bring these under significantly better control, or to go much
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further into the inertial regime, would require much larger computational resources
and/or a breakthrough in algorithm design.

1. Introduction

Spinodal decomposition occurs when a fluid mixture of two species 4 and B,
forming a single homogeneous phase at high temperature ., undergoes spontaneous
demixing following a sudden drop in temperature (or ‘quench’). For suitable composi-
tions and quenches, one enters the ‘spinodal’ regime in which the initial homogeneous
phase is locally unstable to small fluctuations. (Elsewhere one finds instead a nucle-
ation and growth mechanism which is not the subject of this paper.) For compositions
close to 50/50, there then arises, after an early period of interdiffusion, a bicontinuous
domain structure in which patches of A-rich and B-rich fluid are separated by sharply
defined interfaces. The sharpness depends on the temperature drop; we assume a
‘deep quench’ for which the interfacial thickness is, in practice, on a molecular rather
than macroscopic scale. In this late-stage structure, the local compositions of the fluid
patches correspond to those of the two bulk phases in coexistence; the interfacial
tension approaches o, its equilibrium value. Although locally close to equilibrium
everywhere, the structure then continues to evolve so as to reduce its interfacial area.
Local interfacial curvature causes stresses (equivalently, Laplace pressures) to arise,
which drive fluid motion. The interface then evolves smoothly with time between
isolated ‘pinchoff events’ or topological reconnections. In principle these events re-
introduce molecular physics at the short scale; however it is generally assumed that
pinchoff, once initiated, occurs rapidly enough not to impede the coarsening process
(but see Jury et al. 1999b; Brenner et al. 1997). Likewise it is usually assumed that at
late times the presence of thermal noise in the system is irrelevant, at least for deep
quenches (but see Gonnella, Orlandini & Yeomans 1999): the problem is thus one of
deterministic, isothermal fluid motion coupled to a moving interface. Precise details
of the random initial condition, which is inherited from the earlier diffusive stage,
are also thought to be unimportant (assuming that no long-range correlations are
initially present).

For simplicity we address in this paper only the maximally symmetric case of
two incompressible fluids with identical physical properties (shear viscosity #, density
p), and also equal volume fractions, that have undergone a deep quench. With the
assumptions made above, all such fluid mixtures should, in the late stages, behave
in a similar manner. More precisely, the dynamical scaling hypothesis is that, if one
defines units of length and of time by

Lo=n*/(po), To=n/(pc?) (1.1)

(which are the only such units derivable from 5, p, ¢), then at late times any charac-
teristic structural length L(T') should evolve with time T according to

dL/dT = (Lo/ To)¢(L/Lo) (1.2)

where ¢(x) is the same function for all such fluids. (A specific choice of definition for
L is made later on, in terms of the mean domain size.) Integrating this once gives a
universal late-stage scaling

1= 1(t) (1.3)
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where we introduce ‘reduced physical units’,
l=L/Ly, t=(T — Ty)/Ty. (1.4)

Here Tj, is an offset that is non-universal: it depends on the initial condition as
fixed by the early-stage diffusion processes. (Note that in this paper, the symbol ¢ is
reserved for the reduced physical time; unscaled time is denoted T, and temperature
7 . An overdot means time derivative in whatever units are being used.)

The form of [(t) has been discussed by several authors, notably Siggia (1979)
and Furukawa (1985). Siggia argued that, for t+ < 1, the interfacial forces induce
a creeping flow of the fluid; a simple force balance in the Navier—Stokes equation
then gives | oc t in this, the ‘viscous hydrodynamic’ regime. Note that, in a creeping
flow, the fluid velocity depends only on the instantaneous structure of the interface.
(This is why the non-universal offset is in T and not L.) At later times, the force
balance was argued by Furukawa to entail capillary and inertial effects; balancing
these gives [ oc t*3 for t > 1, the ‘inertial hydrodynamic’ regime. It has recently
been shown by Kendon (2000) that Furukawa’s assumption of a single characteristic
length (for velocity gradients as well as interfacial structure) is inconsistent with
energy conservation; her more detailed analysis nonetheless recovers [ oc >3 for the
domain size. Kendon’s arguments, with those of Siggia and Furukawa, are discussed
in §§4, 5.

For a general review of late-stage spinodal decomposition and other aspects of
phase separation kinetics, see Bray (1994). The problem is clearly intractable analyti-
cally: it involves a moving boundary with a complicated and non-constant topology
whose initial condition is defined, implicitly, by the preceding, early-time diffusion.
These features render it equally intractable to many numerical algorithms that might
perform well for other fluid mechanics problems. Indeed, symmetrical spinodal de-
composition has become a benchmark for various so-called ‘mesoscale’ simulation
techniques, developed to address the statistical dynamics of fluids with microstructure.
The results from different techniques can be compared, not only with each other and
with experiment (with the caveat that one cannot realize exact symmetry between
fluids in the laboratory), but with the predictions of the various scaling theories
already mentioned.

In the present work, we study in detail the physics of spinodal decomposition
for a symmetrical binary fluid using the lattice Boltzmann (LB) technique (Higuera,
Succi & Benzi 1989), in a thermodynamically consistent form pioneered by Yeomans’
group (see Swift et al. 1996). Our work, of which a preliminary report appeared
in Kendon et al. (1999), advances significantly the state of the art for simulations
of spinodal decomposition, and for LB simulations of fluid mixtures. In any such
simulation, a balance must be struck between discretization error at small scales, and
finite-size errors (arising in our case from periodic boundary conditions) at large ones;
this compromise is quite subtle, as we discuss below. It means that any individual
simulation run can produce only around one decade of data for the I(t) curve. This
is true for all first-principles simulation methods: in three dimensions there cannot
be more than two decades, or at most three, separating the discretization length from
the system size, before deduction of a half-decade safety margin at each end. (Three
decades before such deduction is optimistic; it means simulating at least 10° degrees
of freedom.)

Despite this restriction, by careful scaling and combination of separate datasets for
eight large (256°) simulation runs, we are able to access an unprecedented range of
I and ¢ (five and seven decades respectively) including regions of the I(¢) curve not
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studied previously. We find nothing to contradict the universality of (1.3), but nor can
we completely rule out violations of it. We obtain the first unambiguous evidence for
a regime in which inertial effects dominate over viscous ones, and find clear evidence
for */3 scaling in this regime. In this and other regions of the [(t) curve, we study
the statistics, not only of the interfacial structure, but also of the fluid velocity. (The
latter was not addressed in detail by previous simulations.) On entering the inertial
hydrodynamic regime we find some evidence for breakdown of simple scaling of
velocity gradients, as proposed by Kendon (2000), but our data do not extend far
enough into this regime to offer a meaningful test of her alternative proposals.

To obtain our new results, we have had to push the LB technique to its limits. For
statistics based on the domain size, errors at the level of several percent, arising from
each of several different sources (residual diffusion, lattice anisotropy etc.) remain.
We do make a systematic attempt to identify and minimize the various sources of
errors — a somewhat arduous task that, our work suggests, has been neglected in
several previous studies. The errors for some of our velocity statistics (especially
those for spatial derivatives of the velocity) are much larger. Nonetheless we present
the data, such as it is, because it highlights several issues both in the physics of
spinodal decomposition and in how simulation results should be obtained, analysed
and interpreted.

The rest of this paper is organized as follows. Section 2 outlines the thermodynamics
of the binary fluid system, and § 3 its governing equations. Sections 4 and 5 outline
the simple and extended scaling analyses referred to above. Section 6 describes the
LB method in the form that we use; § 7 describes how the simulation parameters are
chosen. Section 8 outlines a number of validation tests. Section 9 gives our results
for the evolution of the interfacial structure, § 10 those for the velocity field and §11
those for the velocity derivatives and related quantities. Section 12 summarizes our
conclusions. Two appendices give further information on the effects of residual fluid
compressibility in the LB method and on the relation between our work and that of
previous authors.

2. Thermodynamics

Although we are interested in the late-stage demixing of two isothermal, incom-
pressible fluids separated by sharp interfaces, the LB method resorts to a more
fundamental approach, in which these interfaces are described as excitations of a
thermodynamic field theory. The central object is the Helmholtz free energy

F=E-79, (2.1)

where E is the internal energy, 7 the temperature and % the entropy of the system.

In a system at fixed volume V, and fixed contents and temperature, equilibrium
states are given by global minima of the free energy, F. For a symmetric fluid
mixture, F is a functional of a single composition variable ¢(r), defined as ¢ =
(ng — ng)/(n4 + ng) where the n are number densities, and of the mean fluid density
p = ny + ng. (We take unit mass for 4 and B particles without loss of generality.) In
the incompressible case, p is fixed; we leave it as a parameter in what follows. Further
restricting attention to homogenous states (so that ¢ is the same everywhere), we can
write

F/V =947(¢). (2.2)
Within mean-field theories of fluid demixing, it is predicted that ¥~ has everywhere
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7 (¢)

FiGURE 1. Model potential for phase separation, a symmetric double well, ¥7(¢).
The equilibrium values of the order parameter are +¢*.

positive curvature at high temperatures, but becomes concave below a critical tem-
perature 7 .. The resulting curve is as shown in figure 1, with symmetric minima at
+¢*. Below 7 ., the free energy is therefore minimized by creating two bulk domains
(of equal volume) at compositions +¢” instead of a single homogenous phase with
¢ = 0 (which is our presumed initial condition). The same phase separation occurs
for any other ¢ between +¢”, but in this case the domain volumes are unequal; for
sufficient asymmetry this causes depercolation. (In a depercolated, droplet structure,
coarsening can only occur by diffusion or coalescence so that the scaling arguments
given above cease to apply. We do not address this here.)

The resulting phase diagram is shown in figure 2. Spinodal decomposition occurs
for any quench that leaves the system beneath the spinodal line, on which d*¥"/d¢?
changes sign. Immediately after such a quench, the system is locally unstable: the free
energy can be lowered, in any local neighbourhood, by creating two domains whose
composition differs only infinitesimally from the initial one. (The resulting free energy
density lies on a line connecting two points on ¥"(¢) at the new compositions; in the
convex region, this causes a reduction in F.) Accordingly, infinitesimal fluctuations
will grow by diffusion until there is local coexistence of domains at compositions
approaching +¢".

To describe quantitatively both the domains and the interfaces between them, one
must specify not just #"(¢) but the free energy functional, F[¢]. An acceptable choice
is the square gradient model (see Bray 1994)

Fl$] = / dr (7 () + LIV L), (2.3)

where 77(¢) is as shown in figure 1, and the term in x penalizes sharp gradients
in composition. This ensures smooth local deviations from +¢* near the interface,
and provides a non-zero interfacial tension ¢ which can be calculated as follows. We
consider a flat interface between two domains, introducing a coordinate normal to it,
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Binodal line

Spinodal line

FIGURE 2. Phase diagram for spinodal decomposition. The order parameter is ¢ = (ny—ng)/(ns+ng)
with p = n4 + np the mean fluid density. The temperature axis shows the critical temperature, 7,
below which the system starts to separate, and above which it remains completely mixed.

g. Stationarity of F requires

’¢ _ dr ()
KV = k—b = ——12, 24
Integrating this once across the interface and setting g = 0, ¢ = 0 at its centre gives
K [0\’ .
() = v — 1@, 25)
2 \ 0g
The excess free energy per unit area of interface is then given by
k(0N L
o-—/dg l2(0g> +V(¢)—V(¢)1. (2.6)
By exploiting the fact that V¢ — 0 in the bulk fluid, and using (2.5), we obtain
e 1/2 #\11/2
o= do (26)2 [77(p) —17(d7)] . (2.7)
—*

Given a form for the potential, ¥'(¢), a value for the interfacial tension can thus be
calculated. This is done for the model used in our simulations in § 6.

We now turn to the (exchange) chemical potential, u, which describes the change
in F for a small local change in composition:
oF dv°

= — =— —kV*¢. 2.8

Within the LB approach, the coupling between interfacial and fluid motion arises

as follows. In the presence of a non-uniform composition, there is a thermodynamic

force density —¢Vu acting at each point on the fluid. (The two species are pulled in

opposite directions by the chemical potential gradient; the net force vanishes only
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if ¢ = 0.) This force density can also be written as the divergence of a ‘chemical’
pressure tensor:

GV =V« pchem (2.9)
where it is a straightforward exercise to confirm that
dv”
do
Note that only the last term is anisotropic; the rest contributes, in effect, to the
isotropic fluid pressure P. By integrating (2.9) across an interface, and using (2.10),

one finds that there is, in static equilibrium, a finite pressure difference across a curved
interface, called the Laplace pressure:

AP =¥ (2.11)

PU" =S4 | v —ik{ V2 + VPP + k(V.) (V). (2.10)

where ¢ is the interfacial curvature.

Throughout the above, our description in terms of a smooth composition variable
¢(r), usually known as the order parameter, assumes a coarse-graining so that the
smallest length scale under consideration is larger than the average distance between
molecules. In equilibrium, this coarse-graining is an almost trivial operation, but for
the dynamical description desired below, certain conditions must be met. On scales
smaller than the coarse-graining length, the system must remain in local equilibrium,
while the variations of interest at larger scales must be slow on the scale of the time
it takes for that local equilibrium to be reached.

This does not mean that the microscopic scales can be forgotten from here on.
Although usually a macroscopic description is sufficient to fully understand the
system, ultimately it is still the microscopic interactions that are driving the system
and determining the dynamics. In particular, any interface between the two fluids will
have a microscopic size and structure. It is always a possibility that the microscopic
behaviour can intrude at the macroscopic level (for example, by interfering with
pinchoff) and change the results predicted by any simple macroscopic considerations.
In particular, when using numerical models, care must be taken that the microscopic
behaviour in these models is admissible.

3. Governing equations
The equation of motion for ¢ is taken to be a convective—diffusion equation of

Cahn Hilliard type (see Bray 1994; Swift et al. 1996)

(3.1)

(IS-I—U'V(i):MVz,u:—MVZ{KVz(,b_W}’

d¢
where M is an order-parameter mobility (here assumed independent of ¢) that
controls the strength of the diffusion, and »(r) is the fluid velocity. This equation
states that the order parameter responds to composition gradients by diffusion (the
MV?u term), and also changes with time because it is advected by the fluid flow (the
v-V¢ term).

The fluid velocity in turn obeys the Navier—Stokes equation (NSE), which for an
incompressible fluid reads

plv + (v Vo] = Vo — V- 2™ (3.2)

Here 9;’;3 is the ‘thermodynamic’ (or conservative) part of the pressure tensor, and
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contains two parts: an isotropic contribution Pd,, chosen to maintain constant p,
and the ‘chemical’ pressure tensor, @;}[’f’", defined previously in (2.10). Recall that by

(2.9), the chemical term —V -+ 22" can equally well be represented as a body force
density —¢Vu acting on the fluid, so that (3.2) can also be written

plo + (v - V)] = yV?v — ¢Vu — VP. (3.3)

Within the LB approach of Swift et al. (1996), the governing equations are solved
by relaxing slightly the requirement of fluid incompressibility. We return to this in §6.

4. Simple scaling analyses

The pair of coupled nonlinear differential equations, (3.1) and (3.2), is intractable,
but various dimensional and scaling ideas may be used to find out how fast the
domains grow once the diffusive period is over. All these analyses assume that the
interface can be characterized by a single length scale —that is, it is basically smooth,
with radii of curvature that scale as the domain size itself, which is much larger than
the interfacial thickness.

Many domain-scale length measures are possiblet; we use L(T), the inverse of the
first moment of the spherically averaged structure factor, S(k, T'):

/S(k, T)dk

L(T)=2n"t—
/kS(k, T) dk

, (4.1)

where k = |k| is the modulus of the wave vector in Fourier space, and
S(k,T) = (¢p(k, T)p(—k, T)) (4.2)

with ¢(k, T') the spatial Fourier transform of the order parameter. The angle brackets
denote an average over a shell in k-space at fixed k.

The aim of scaling analyses is to find the form of the time dependence of L(T) by
considering the NSE (3.3), and balancing the force from the interface,—¢Vu, against
the viscous and inertial terms which tend to oppose its motion. The interfacial force
density, —¢Vu, can be approximated as follows. The curvature, ', is of order 1/L,
since L(T) is roughly the size of the domains. This sets the scale of 2" through
(2.11), as o/L. Likewise the gradient operator, V, can be approximated by 1/L(T) in
(2.10), which then becomes

o
—pVu ~ Iz

Now we turn to the remaining terms in the NSE (3.3). We start by assuming
that the length L also controls the magnitude of V as far as velocity gradients are
concerned. Approximating also the fluid velocity, », by the velocity of the interface

(4.3)

1 Other authors, for example Laradji, Toxvaerd & Mouritsen (1996), have used the first zero of
the real space correlator of the order parameter to define a length measure, in preference to our
choice (4.1). In any scaling regime, these and other measures will vary in constant ratio (Jury et
al. 1999b), although their rates of convergence, as the scaling limit is approached, may be different.
If a single measure is chosen, then a faster converging quantity gives a better estimate of the true
scaling exponent; but a slower converging one offers a more stringent test that a proper scaling
limit has been reached.
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L(T), gives for the viscous and inertial terms respectively

L
an:nﬁ3 (4.4)
. i2
plo+ (v-V)r] sz—I-pf. (4.9)

Under conditions in which the inertial terms are negligible, the force from the
interface will be balanced by the viscous force, giving L/L? ~ ¢ /(nL?). Integrating
this gives

L:%U—ﬂm. (4.6)

Thus the domain size is predicted to grow linearly with time in the region where the
fluid flow is viscous dominated. This is the result of Siggia (1979). Linear growth has
been reported in experiments by, for example, Kubota et al. (1992), Chen et al. (1993),
Hashimoto et al. (1994), and in simulations incorporating hydrodynamics by Koga &
Kawasaki (1991), Puri & Diinweg (1992), Alexander, Chen & Grunau (1993), Larad;i
et al. (1996), Bastea & Lebowitz (1997) and Jury et al. (1999b).

To find the growth rate in the inertial region, Furukawa (1985) balanced instead the
inertial and interfacial terms; assuming again only one relevant length, he obtained

~=~7 (4.7)

Integrating this twice gives, for large enough T, L? ~ ¢T?/p, so that the domain size
grows as L ~ T?/3. This result has not yet been observed experimentally (for reasons
we discuss later, § 12). There are a few previous claims to have seen this in simulation
(Ma et al. 1992; Appert et al. 1995; Lookman et al. 1996), but none reliably establish
dominance of inertial over viscous forces as we do below in § 10.

Comparing the results of (4.6) and (4.7) allows us to estimate a characteristic domain
size, L = L*, and characteristic time, T = T+ T;,, at which the crossover from viscous
to inertial scaling occurs. (To be precise, we can define L*, T by the interception of
asymptotes on a log-log plot.) This leads to L* ~ Ly, T* ~ Ty, with Ly, Ty defined
in (1.1). Converting to reduced physical units | = L/Ly, t = (T — Tiy)/ Ty as defined
previously, and invoking the dynamical scaling hypothesis, we have respectively

| = byt, t < t* (viscous regime), } 48)

I =byst*3, t>1¢ (inertial regime),

where by,by3 and t* are dimensionless numbers that should be universal to all
incompressible, fully symmetric, deep quenched fluid mixtures. What scaling theories
cannot predict, of course, are values of the universal constants by, b/3,t", other than
to state that these are ‘of order unity’.

In fact our simulations show that t* = T*/T, is between 10* and 10°, which
is ‘of order unity’ only in a rather unhelpful sense; the implications of this are
discussed in §12 below. We will also find that the crossover region, between the
asymptotes described by (4.8), is several decades wide. Although there is no explicit
scaling prediction for the behaviour within this crossover region, its width means
that each individual simulation dataset, either within or outside the crossover, can be
well-described by a single scaling exponent, «, such that

I ~ b, (4.9)
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where by < b, < byy3, and 1 < o < 2/3. We use this form below, when analysing our
numerical data.

5. Extended scaling analysis

In what follows we will find it useful to compare directly the relative magnitude of
the various terms in the NSE. Two ratios have therefore been defined, the RMS ratio
R, between the acceleration term and the viscous term,

(lpol?)
Ri=1 1 (5.1)
()

and the RMS ratio R, between the nonlinear term and the viscous term,

 (plw- Vo)
R = S vam)

Here () denote spatial averages (though an ensemble average might be preferable
under some conditions). These ratios obey Rj,R, > 1 where the inertial terms
dominate and Ry, R, < 1 where the viscous term dominates. The ratio R, we identify
as the ‘true’ Reynolds number, that is, a dimensionless measure of the relative
importance of nonlinearity in the NSE.

When R,, (5.2), is simplified using the normal scaling assumption (V ~ 1/L), the
result is the following estimate:

(5.2)

_pv*/L _ uL
/L n/p

Assuming that the characteristic velocity scale is v ~ L, one finds (following Furukawa
1985; Grant & Elder 1999) the Reynolds number estimate Reg,

) (5.3)

Ry~ Rey = gL(T)L =1l = ab?> (5.4)

This ‘order-parameter Reynolds number’ has the advantage, in simulations, that it is
computable from L(T) without direct access to any fluid velocity statistics. However,
Reg is only a good estimate of the true Reynolds number R, if the simple scaling
for velocity gradients of V — 1/L does indeed hold. This assumption leads to the
following paradox, as noted by Grant & Elder (1999). According to (5.4), if in the
inertial region o = 2/3, then Re, ~ t**~! which becomes indefinitely large as time
proceeds. Grant & Elder argued that this could not be physical, on the grounds that
an infinite Reynolds number would imply turbulent remixing of domains: this would
limit the domain growth to such a speed that Re, remained bounded at late times.
Equation (5.4) then demands a lower asymptotic growth exponent, o < %, as t — oo.

However, a closer look at the scaling of all the terms in the NSE admits an
alternative resolution. Kendon (2000) pointed out that a minimally acceptable scaling
theory should allow not only a force balance in the NSE, but a balance of terms in
the global energy equation, which for an isothermal, incompressible fluid reads

d(pv?)
dt

where ¢ = n((V.,vp)(V.vp)) is the dissipation rate, and ¢;, is the rate of energy transfer
from the interface to the fluid. Retaining the assumption that the interface (as opposed

= —&+ &, (5.5)



Inertial effects in spinodal decomposition 157

to the velocity field) has just one characteristic length, ¢;, is readily estimated from
(4.3) as oL/

Applying the simple scaling for velocity gradients (V ~ 1/L) to each term in (5.5)
gives the following energy ‘balance’ in the inertial regime where L ~ T?/3:

—pT ~ T2+ 6T, (5.6)

where factors p, 7,0 are retained to aid identification of the terms. At first sight this
suggests a balance of interfacial and inertial terms, with the viscous contribution
negligible, at late times: this is Furukawa’s assumption. However, the signs show this
to be inconsistent: the kinetic energy and the energy stored in the interface are both
decreasing with time, so these cannot properly be balanced against each other.

This exposes a central defect of the simple scaling analysis in the inertial regime.
It is well known, of course, that even the simplest theories of fluid turbulence entail
several length scales (whereas more modern ‘multiscaling’ theories have, in effect,
infinitely many, Frisch 1995). In the simplest, Kolmogorov-type approach (see Frisch
1995; Kolmogorov 1941), the important lengths are the Taylor microscalet

A= (5n(v?) /)2, (5.7)
characteristic of velocity gradients, and the Kolmogorov (dissipation) microscale,
Ja = 2m(n’ /pe) %, (5.8)

the length scale below which nothing interesting occurs. (Energy is dissipated at or
above the scale /1,.)

Kendon (2000) argued that in a binary fluid system where the fluid motion has
become turbulent, the velocity follows the interface and scales as L, but the first
and second gradients of velocity have scalings set by A and A, respectively, rather
than by L. Within this simplified (Kolmogorov-level) description, the only scalings
for these three lengths found physically admissible by Kendon for the inertial regime
were A ~ TV?, j; ~ T2 L ~ T?3. In the NSE, this gives for the acceleration,
convection, viscous and driving terms the following scalings:

pT™ 3 4 pT7 /0 ~ nT7/0 4 6T, (5.9)

The predicted outcome is thus a balance between the nonlinear and dissipative forces
that is decoupled from the interfacial motion, while interfacial stresses balance fluid
acceleration. The existence of a nonlinear/viscous balance implies an asymptotically
finite value for the ratio of the corresponding terms in the NSE, that is, a finite
asymptote for the true Reynolds number R,. On the other hand, since the result
for the domain scale, L ~ T?3, survives unaltered from the simple scaling theory,
the Reynolds number estimated from the order parameter, Re,, continues to grow
indefinitely. This suggestion, although speculative, appears to resolve the issue raised
by Grant & Elder, without requiring a change in the domain scale growth law (nor
any breakdown of universality of (1.3)).

To summarize, Kendon (2000) predicts a balance in which energy is first trans-
ferred from the interface (—¢Vyu) to large-scale fluid motion (p#). The nonlinear term
(pv - Vo) then transfers the energy from the large scales down to smaller scales where
dissipative forces (nV>?v) finally remove it from the system. The resulting energy cas-
cade thereby decouples the energy input scales from the dissipation scales—a familiar

+ The prefactors in the definitions of the Taylor and Kolmogorov microscales differ among
sources.
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Inertial region
Viscous Simple New
Quantity region scaling scaling
L(T) 1 2/3 2/3
2= (5n{v*)/e)'/? 1 2/3 1/2
Jq = 2m(n’/pie)l/4 1/2 1/2 5/12
v 0 —1/3 —1/3
pb =0 —4/3 —4/3
pv-Vo =0,—1 —4/3 -7/6
nV2v -2 —5/3 -7/6
PVu -2 —4/3 —4/3
Re, =11 1 1/3 1/3
R; =0 1/3 —1/6
R, =0 1/3 0
& = n(Vv)? -2 -2 —-5/3

TaBLE 1. Summary of predicted scaling exponents for the viscous and inertial regions. The ‘new’
scaling theory (Kendon 2000) gives the same predictions as simple scaling for the viscous region,
except for the NSE term pv - Vv. Entries are powers of T, an entry of O indicates the quantity
is constant, while an entry of = 0 indicates the quantity is assumed to be zero in the viscous
approximation. Bold entries indicate scaling predictions that differ from the simple theory. From
Kendon (2000).

enough idea in turbulence theory (Kolmogorov 1941). In contrast, in the viscous hy-
drodynamic regime, the simple (one-length) scaling theory is already consistent with
energy conservation, and all its results are recovered. Kendon’s predictions for scaling
are summarized for ease of reference in table 1.

6. Numerical method

The model system described by (3.1) and (3.2) was simulated numerically using a
modular LB code called Ludwig, described in detail in Desplat, Pagonabarraga &
Bladon (2001). It has both serial and parallel versions; the parallel code uses domain
decomposition and the MPI (message passing interface) platform. Any cubic lattice
can be used with the Ludwig code; the lattice parameter is taken as unity, as is the
time step AT, thereby defining ‘simulation units’ of length and time.

Here we chose the D3Q15 lattice, a simple cubic arrangement in which each
site communicates with its six nearest and eight third-nearest neighbours. The fluid
dynamics is, as usual (see Higuera et al. 1989; Ladd 1994) encoded at each site by a
distribution function f;, where the subscript obeys 0 < i < 14. This ascribes weights
to each of 15 velocities ¢;: one null, six of magnitude 1, eight of magnitude \/§, with
directions such that each velocity vector points toward a linked site. In order to model
the binary fluid, a second set of distribution functions, g;, is also used, following Swift
et al. (1996). The f are defined such that

> fi=p, (6.1)

where the sum is over all directions, i, at a single lattice point, while for g; the same
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> gi=¢. (6.2)

(At this point, our algorithm departs from that of Swift et al. (1996), who would
have ¢p on the right. The two methods differ only by terms that vanish in the
incompressible limit of interest, where p — 1 everywhere.)

The momentum, pv, (with « a Cartesian index) is then given by

pUy = Zficm (6.3)

sum gives the order parameter,

where ¢, = (¢;),. The full pressure tensor, 2,4, is given by
guﬁ = Z fiCiaCiﬁ~ (6.4)

This expression includes not only the conservative stress 9”;’;; but also dissipative
(viscous) contributions, and a trivial ‘kinetic pressure’ pv,vg which arises in any fluid
moving at constant velocity v.

The distribution functions f;, g; obey discrete evolution equations involving simple
first-order relaxation kinetics toward a pair of equilibrium distributions:

filr + et + 1) — filr,0) = —(fi — £) /71, (6.5)

gilr et +1) —g(r,0) = —(g — g/, (6.6)
thus defining two relaxation parameters 71, 7,. In our use of the code we select 7, = 1
which causes g; to be reset to g'® each time step. The viscosity is determined by 1,
with 7 = (2t; — 1)p/6 in lattice units. The equilibrium distributions, f\* and g*?,
can be derived from (6.1)—(6.3), along with the condition that the order parameter is
advected by the fluid,

> gl Ve, = du,, (6.7)

and that the pressure tensor and chemical potential at equilibrium obey
> Ve = Pl + puavy, (6.8)
> g Vency = Mud,p + vy, (6.9)

The parameter M controls the order-parameter mobility M via MAt(t, — 1/2) = M,
so that M = 2M in our case. (Note that in Kendon et al. (1999) and Cates et al.
(1999), the quoted values of M are in fact M values and should therefore be halved
to give the true order-parameter mobility.) The second term on the right in (6.8) is
the trivial ‘kinetic pressure’, with an analagous term in (6.9).

By expanding f\“, g'“ to second order in velocities and solving for the coefficients
one obtains

fl(eq) = pw,{A, + 3v,ciy + %vavﬁcmciﬁ — %vz + GopcinCip}- (6.10)

Here, v is an index that denotes the speed: 0, 1, or \/§ ; and w,, 4, and G, are
constants given by

wy = L (6.11)
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1
Ag=2-1Trp™; A =A4=-Trp" (6.12)
P
Gy = ig% _ 30y g, (6.13)
2p 2p

The equilibrium distribution for the order parameter, g'”, is the same as for f?,

with 22" replaced by Mpul in the above equations. The above results follow Swift et
al. (1996), generalized to three dimensions.

To complete the model specification, one must introduce expressions for the pressure
tensor and chemical potential derived from the free energy functional. In this study
we chose in (2.3) a simple ‘¢p* model for ¥ (¢):

Fl¢,p] = / dr{14¢® + 1B¢* + 1x(Ve)* + Lplnp}, (6.14)

where A < 0. (The term in p is discussed below.) With this choice one finds ¢* =
+(—A/B)"2, and using (2.7), (2.8),

o = (—8xA’/9B?)'/2, (6.15)

= Ad + Bp® — V3¢ (6.16)

The equilibrium interfacial profile is given by ¢/¢* = tanh(g/&y), where g is the
normal coordinate introduced previously, and

& = (—K/24)'? (6.17)

is a measure of the interfacial width.

An important addition to (6.14) is the term dependent on density p, here chosen as
an ‘ideal gas’ type contribution (up to the factor 1/3). This gives a diagonal term in
the thermodynamic pressure tensor, which becomes

Py = (3P + 549 + 1B* — kpV>$ — T1(VP)* 19,5 + 1(0,)(Oph), (6.18)

so that the thermodynamic stress obeys ?;’k = (p/3)0,p + ?;’ﬁ”’. Thus in practice
p/3 = P, which is the isotropic pressure contribution normally viewed as a La-
grange multiplier for incompressibility. But, in fact, our LB algorithm does not
know that the fluids are meant to be incompressible; instead the ideal-gas term is
relied upon to enforce incompressibility to within acceptable numerical tolerances.
(This avoids a separate calculation, at each time step, of the fluid pressure P and
renders the algorithm local.) Compressibility errors can be minimized by increas-
ing the coefficient of plnp in (6.14), which would require a shortened time step,
or for fixed time step, by reducing the magnitudes of 4, B, and «k together so that
an acceptable level of incompressibility is maintained. The second route is followed
here.

The chosen functional (6.14) has a number of advantages for numerical simulation.
The main terms in 2" and u are simple powers of ¢, so are easy and quick
to evaluate. (Models involving logarithms or trigonometric functions (Swift et al.
1996) pay a heavy price in computational efficiency.) Further, the shape of the ‘¢*
potential is fairly smooth, avoiding very steep gradients that might lead to inaccuracy
and instability when approximated numerically on a lattice. We nonetheless need to
evaluate spatial gradients of ¢; this is done using all 26 (first, second and third)
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nearest neighbours on the D3Q15 lattice, so that numerically

Z Cia¢(" + ci)
0up(r) = — (6.19)

b
§ CiaCiy
i

26
V() = 5 KZ P+ ci)> - 26¢(r)1 . (6.20)
i=1

Note that these are not the only possible choices and that others will only coincide
when all gradients are small on the scale of the lattice. There may be considerable
scope for improvement by optimizing the choices made, but we leave this for future
work.

As usual in a LB simulation, we have chosen a lattice with enough symmetry to
ensure that the rotational invariance of the fluid mechanics is faithfully represented
(Higuera et al. 1989). However, this does not guarantee that the same holds for
the thermodynamic properties. With our choice of free energy functional (6.14) and
the above gradient discretization, rotational invariance in the thermodynamic sector
is recovered only when all order parameter gradients are weak, which in principle
requires &y > 1. In practice, a compromise is necessary; we return to this in §8.2
below.

Finally, the hydrodynamic behaviour of the LB technique requires detailed com-
ment. The hydrodynamic equations that correspond to LB can be obtained by making
a Chapman—Enskog expansion of the Boltzmann equations (6.5), (6.6). If we consider
the expansion for the distribution function f (which relates to the fluid momentum)
we arrive at

O1(pvy) + 04(pvovp) = —6,;@;};, + 0g[n(9pvy + Oyvp — %(Xxﬁﬁyvy) + £0,0,044]

3 | | | 3
—?"a,; (10,0, 2" + 0,0, P8 4 1,0, 7% — ?”a,;a,(pvauﬁuy),
(6.21)

where # and ¢ are the shear and second viscosities, respectively. For our single-
relaxation LB scheme & = 2y/3.

The first line of (6.21) corresponds to the standard Navier—Stokes equation, and
shows that, through these terms, the model recovers both the compressible and
incompressible features of isothermal hydrodynamics.

The second line in (6.21) contains spurious terms, which arise partly because the
enthalpic interactions that lead to the non-ideal behaviour of the LB fluid (or fluid
mixture) are introduced through equilibrium information only. (In a Hamiltonian
system, the same interactions that perturb the equilibrium state away from an ideal
gas would also be responsible for the dynamics.) The second of the two terms is
not Galilean invariant but is cubic in the velocity. It will be negligible for small
velocities (recall that the LB algorithm anyway requires fluid velocities that are small
in lattice units). The first term can be decomposed into a Galilean-invariant part,

+ Note that when modelling a macroscopic length, L, the ratio #/(cspL) will be larger than in
typical real fluids; owing to the presence of the lattice, LB does not have a sharp separation between
the compressible and incompressible time scales. In this respect, it resembles a high-viscosity fluid;
Hagen et al. (1997).
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which is a product of gradients of the pressure and velocity, and a non-Galilean-
invariant contribution. The product term is small compared to the Navier—Stokes
terms, which are linear in such gradients, whenever these are weak; the non-Galilean-
invariant term is small under the same conditions. There have been recent proposals
to enforce Galilean invariance within compressible multiphase LB schemes, Holdych
et al. (1998), and this is a desirable feature of future algorithms. Nonetheless, under
circumstances where all hydrodynamic fields vary smoothly on the lattice scale, the
spurious terms appearing in the second line of (6.21) will typically be smaller than
the retained ones of the NSE equation in the first line.

The evolution equation for the order parameter can be obtained analogously, by
performing a gradient expansion of the linearized Boltzmann equation (6.6). This
leads to

or+ outg) = (2= 3 |V — o, (L1 ) |. (622)
Equation (6.22) has the usual form of a convection—diffusion equation, so long
as one chooses M as a constant, except for the last term. As with (6.21), this
Galilean-invariant term arises as a result of the way in which the non-ideality of
the fluid mixture is introduced; like the first spurious term in (6.21) it contains one
higher derivative than the term 09(9”;’}3 that enters the Navier—Stokes equation, and is
expected to be small for similar reasons. In Appendix A we confirm explicitly that, in
the incompressible limit only, this spurious term does not modify the hydrodynamic
modes of a binary mixture, at the level of a linearized expansion about a uniform
quiescent fluid.

Although the expansion of our lattice equations, outlined above, recovers adequately
the required continuum equations, (3.2), (3.3), we note that certain microscopic prop-
erties, desirable in principle for a consistent binary fluid model, are lacking. These
are linked to the fact that the steady-state behaviour of the lattice model does not
generally correspond to a Gibbsian equilibrium state. For example, it is known that
in an LB simulation an isolated droplet of one fluid in another is, at rest, not only
slightly aspherical (§8.2), but also accompanied by small steady-state diffusive fluxes
(‘spurious currents’) from one part of the droplet surface to another, thus violating
the principle of detailed balance. (In our use of the code these are suppressed well,
because even the physical diffusion is kept to the minimum necessary to maintain
interfacial equilibrum; see §8.3.) Other (related) features lacking in our model are an
H-theorem, unconditional stability, and inclusion of thermal noise (see Boghosian et
al. (2001) for a single-fluid LB algorithm that addresses some of these issues). Because
these features are microscopically present in binary fluids, it can be argued that an
algorithm that satisfies them is less prone to physically spurious artefacts than one
which does not; and indeed, unconditional stability (for example) would be a great
numerical advantage (§8.1). However, detailed balance, which stems from the re-
versibility of an underlying Hamiltonian description, is not implied by the continuum
equations (3.2), (3.3) and therefore cannot be required for their accurate solution.
It is nonetheless true that to whatever extent our numerical work deviates from the
continuum limit, the deviations will be those of LB fluids which do not have detailed
balance, and not of real fluids, which do. A similar but weaker remark would apply,
of course, even to a fully Gibbsian lattice model, in the sense that real fluids do not
have a lattice.

In summary, for a nominally incompressible fluid the correct fluid behaviour is
recovered in the only regime where it can justifiably be expected, namely when all the
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hydrodynamic fields vary slowly on the lattice length scale. Within the current LB
algorithm, one also depends on having only slight fluid compressibility: this eliminates
a spurious coupling between order parameter and momentum fluxes (Appendix A,
and Swift et al. 1996; Holdych et al. 1998). Because of this it is important, with the
current algorithm, to monitor closely the actual fluid flow.

7. Parameter steering

Since it is possible in a single simulation to sample only a small piece of the I(t)
curve, it is necessary to work one’s way along this curve via a series of different runs.
This means varying L, relative to the lattice constant so that an appropriate window
of reduced length scales [ lies within the range of the simulation. Put differently, one
must set, in lattice units, 1 < Lol(t) < A.

In the simulations, however, we need to choose not one parameter value (Lj) but
seven (4, B, x, p, M, and also t1,7,). Few of these parameters can, in practice, be set
independently: an unguided choice would typically produce a simulation that either
did nothing over sensible time scales or became unstable very rapidly. To avoid these
outcomes, careful parameter steering is required. This was done by semi-empirical
testing using small (workstation) simulation runs until satisfactory choices emerged.
Runs on 96° and 128’ lattices were used to confirm these before committing the
resources for 256 runs. The resulting parameters are summarized in tables 2 and 3.
The guiding principles that emerged from this process, as well as the actual parameter
values, are of some interest to those planning future work with LB codes. They are
now summarized briefly, followed by a discussion (§8) of several validation exercises
that were then undertaken.

In essence, our navigation of the [(tf) curve involves steering three parameters
(n,0,M) at fixed values of the remaining four (B/A,k/A,p,t;). First, the (mean)
density p can be set to unity without loss of generality; we do this. Second, we set
¢* = 1 by choosing B = —A; in terms of the original definition of the order parameter
(¢ = (ngy — np)/(ny + np)) this amounts to a simple rescaling of ¢ — ¢/¢p*. Varying
K in proportion to A then gives control over the interfacial tension ¢ (6.15) while
retaining a fixed interfacial width &, in lattice units (6.17); this keeps thermodynamic
lattice anisotropies under control (§8.2).

To achieve an efficient simulation, one requires the interfacial velocity L to be
of order 0.01 in lattice units during the main part of each run. (Any slower will
exhaust resources; any faster will give compressible and inaccurate fluid motion,
and, in all likelihood, numerical instability.) At each point on the I(t) curve, this
gives a posteriori a relation between # and o. Thus to access large | one clearly
requires small Ly = #%/(po); but to avoid compressibility problems (§8.4) this must
be done by reducing viscosity rather than increasing interfacial tension. Maintenance
of numerical stability (§8.1) requires in fact that we decrease ¢ with decreasing #;
however, these factors do not cancel in Ly and a wide range of values (about six
decades) can stably be achieved. Thus we were able to explore the viscous, crossover,
and inertial regimes; these various regimes are delineated quantitatively in §9.2
below.

Setting the correct mobility M is crucial throughout. Across the whole I(t) curve,
one has to ensure that M is large enough that interfaces relax to local equilibrium
on a time scale fast compared to their translational motion. But if M is made too
large, residual diffusion becomes a significant contributor to the coarsening rate,
contaminating the data. This tradeoff can be eased in principle by going to larger



164 V. M. Kendon and others

system sizes than those currently available. It could also be improved by making
M a function of ¢, setting (for example) M = My(1 — ¢*). This would have the
effect of giving strong diffusion only where it is needed, in the interfacial region.
However, implementation of this within the LB method is not trivial (Swift et al.
1996); specifically it is not enough to make M in (6.9) ¢-dependent, since in (6.22) M
enters in the form V?(Mp) rather than as V- (MVy) as would be required if M were
not constant.

It is not surprising that mobility is a limiting factor at large L, (viscous regime,
small [): diffusion will always enter if the fluid flow is slow enough (high enough 7).
But mobility factors also come into play at the inertial end (small Ly, large [): in
physical units, the interface in this regime is unnaturally wide and to maintain it in
diffusive equilibrium (and keep the algorithm stable) again requires relatively large
M. These cause residual diffusion which, for our system sizes, limits from above the
range of | accessible.

Finally, we found that accuracy in the viscous regime (small /, large Ly) is com-
promised when the viscosity becomes too large (of order unity, in lattice units). The
signature of this is an apparent breakdown of energy conservation (see §11.5). We
are not sure of its origins, but note that too large a viscosity causes the dynamics of
momentum diffusion and of sound propagation (density equilibration) to mix locally.
In an almost steady flow this should not matter, but in the small-/ regime the viscous
and interfacial terms in the NSE are both numerically large. In principle these balance
to give negligible fluid acceleration but their numerical cancellation may be imperfect.
Although any such local accelerations are numerical in origin, the response to them
may need to be accurate, if the global physics is to be handled correctly. We speculate
that this is a limiting factor in our exploration of the I(t) curve at the lower end.

In this study, the largest system size was A° = 256, although owing to disk storage
limitations, the results from this system size were analysed only after coarse-graining
down to 128°. The coarse-graining was done by averaging over blocks of eight
neighbouring lattice sites to create one coarse-grained value. Runs at 1283 and 963
were also done, and results for all calculated quantities were compared between 2563
and 128’ runs with the same parameters, to identify any effects of coarse-graining.
The main 96° and 128?256 simulations were run respectively on the EPCC Hitachi
SR-2201 machine (4 processors) and the EPCC Cray T3D (64 and 256 processors).
Follow-up studies used in some of the velocity analysis work, and for additional
visualization, were made on the CSAR Cray T3E at Manchester.

Typical runs required, in the 256° case, around 3000 T3D processor hours CPU,
and 10* time steps to reach the point where finite size effects set in (see §8.5). All
simulation were run with periodic boundary conditions; the initial configuration was
always a completely mixed state, with small random fluctuations. For each run, the
order parameter, ¢, and the fluid velocity vector at each lattice site were saved
periodically for later analysis. The sampling frequency was limited by the available
disk space. Typically, data were saved every 300 time steps giving, over a run of 10*
time steps, around 4Gbytes of data.

8. Validation and error estimates
8.1. Numerical stability

The LB method is not generally stable. In fact, our experience suggests that, whatever
parameters are chosen, any run would eventually become unstable if continued for
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Run Ly Ty —A,B K n M o
Run028 36 935 0.083 0.053 1.41 0.1 0.055
Run022 5.95 71 0.0625 0.04 0.5 0.5 0.042
Run033 5.95 71 0.0625 0.04 0.5 0.2 0.042
Run029 0.952 4.54 0.0625 0.04 0.2 0.3 0.042
Run020 0.15 0.885 0.00625 0.004 0.025 4.0 0.0042
Run030 0.01 0.016 0.00625 0.004 0.0065 2.5 0.0042
Run019 0.00095 0.00064 0.00313 0.002 0.0014 8.0 0.0021
Run032 0.0003 0.00019 0.00125 0.0008 0.0005 10.0 0.00083

TABLE 2. Parameters used in 256> lattice-Boltzmann runs.

Run Ly Ty —A,B K n M o
Run010 381 25656 0.125 0.08 5.71 0.5 0.084
Run026 36 935 0.083 0.053 1.41 0.25 0.055
Run027 36 935 0.083 0.053 1.41 0.1 0.055
Run014 5.95 71 0.0625 0.04 0.5 0.5 0.042
Run008 0.952 4.54 0.0625 0.04 0.2 0.5 0.042
Run018 0.15 0.885 0.00625 0.004 0.025 4.0 0.0042
Run015 0.00095 0.00064 0.00313 0.002 0.0014 8.0 0.0021
Run031 0.0003 0.00019 0.00125 0.0008 0.0005 10.0 0.00083

TABLE 3. Parameters used in 1283 lattice-Boltzmann runs.

long enough; this is not dissimilar to some molecular dynamics algorithms, see Allen
& Tildesley (1987). During testing, a reliable picture was acquired of the characteristic
way in which this happens. When the inaccuracies have built up to the point of failure,
the velocities become very large over a small number of time steps until numerical
overflow causes the code to stop running. There seems to be no danger of taking
data from a period when the system might be far from accurate but still apparently
running successfully, since the onset is so rapid. Thus there are several runs among the
set used for final data analysis where the run ended prematurely due to instabilities,
but the data prior to the instability has been considered sufficiently reliable to be
used.

8.2. Anisotropy and interfacial tension

The elimination of lattice anisotropy in the thermodynamic sector of the model
requires & = 1 in lattice units, to ensure that the interfacial tension ¢ is independent
of interface orientation. In practice this goal must be balanced against other demands.
To test the extent of the problem, a spherical droplet (radius 32 lattice units) of fluid
B surrounded by fluid A was allowed to equilibrate. The interface profile was then
measured by evaluating the mean and standard deviation of the order parameter ¢(r)
at various radii r (binned on the scale of 0.1 lattice units) from the droplet centre.
The result is presented in figure 3 for &, = 0.57 and for &, = 0.88. Note that the
‘width’ of the interface, as judged by eye, is actually about 5&.

A closer look at the droplet shape (not shown) in each case reveals that the
sphere has deformed slightly by squeezing along the Cartesian lattice directions and
expanding along the diagonals. This deformation is about 3.5% for the narrower
profile and about 1.5% for the wider profile. A similar test, done with a sphere of
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FIGURE 3. Interface profile (¢) and gradient profile (V¢), for spherical droplet equilibrated in the
opposite fluid. Data have been collected in bins of width 0.1 lattice spacings, and the error bars are
one standard deviation. The sphere radius is 32. (a) Interface width set by &, = 0.57. The theoretical
profile is tanh(g/&), for a flat interface, where g is a coordinate normal to the interface. (b) Interface
width set by & = 0.88.

radius 31.5, confirmed that this deformation was not due to any tendency of the
interface to lock onto specific lattice sites but purely from anisotropy of the tension.

If all else were equal, the wider interface would be chosen. However, the computa-
tional penalty for wider interfaces is severe. To maintain these in local equilibrium,
the mobility M must be high enough to allow diffusion across several & on a time
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—A,B K n M o theory o measured
0.083 0.053 1.41 0.1 0.063 0.055
0.063 0.04 0.5 0.5 0.047 0.042
0.0063 0.004 0.025 4.0 0.0047 0.0042
0.0031 0.002 0.0014 8.0 0.0024 0.0021
0.0013 0.0008 0.0005 10.0 0.00094 0.00083

TABLE 4. Interfacial tension, theoretical and measured values.

scale faster than fluid motion. For the wider interface (£, = 0.88) the resulting residual
diffusion then contaminates much of the remaining L range. It was thus found neces-
sary to sacrifice some isotropy for efficiency, and the narrower profile with &, = 0.57
was used for the main runs in this work. The resulting anisotropies are marginally
detectable by eye in visualizations of the interface for the spinodal system (e.g. fig-
ure 10 below). We estimate that they contribute systematic errors of a few percent to
the growth rate L(T), which is comparable to other sources of error.

The mean interfacial tension was measured for each parameter set by allowing
an interface to come to equilibrium and numerically performing the integration in
(2.7). Both terms were evaluated, and an average taken over various configurations.
This gives values for the interfacial tension, shown in table 4, that are systematically
about 10-15% smaller than the theoretical values. (The statistical error is a few
percent.) The difference is due to the narrow interface leading to inaccuracies in the
gradient calculations. But as far as the simulation is concerned, this systematic effect
is removed by our using the measured value of the interfacial tension in subsequent
calculations of Ly and Ty.

8.3. Local equilibrium and residual diffusion

Errors in the interface-driven dynamics can arise if the interface is not maintained in
local equilibrium. This was tested as follows. Since the bulk fluid is fully separated
(¢p = +1), one expects 1 — (|@|) oc A/V oc 1/L, where A/V is the area per unit
volume, and angle brackets denote a real-space (site) average. Within a given run,
any departure from constancy of the product L(1 — {|¢|)) is thus an indicator that
the interfaces are failing to keep up with the evolution of the surrounding fluid. (This
product could have different asymptotic values in the viscous and inertial regimes,
so the product need not be the same in different runs.) At the lowest values used
for the mobility M (deep in the viscous regime) there was measurable deviation from
constancy, from which the non-equilibrium deviations in ¢ were estimated to be of
order 5%. Any deviations in the inertial regime were, however, smaller than this.

Careful checks were made to exclude residual diffusive contributions to the coars-
ening process. This was done using comparator runs in which the viscosity was set
to an extremely large value so that coarsening was purely diffusive. (Such runs are
depicted in figure 7 below.) From this, the diffusive coarsening rate was found as a
function of domain size. Then for the full run (with fluid motion reinstated) all data
were excluded for which this diffusive coarsening rate exceeded 2% of the full rate.
This whole procedure was repeated with a limit of 1% instead of 2% on the residual
diffusion. The values of the fitted exponent o as per (4.9) (given in the last column
in table 5, below) did not change beyond the estimated errors so the limit of 2%
diffusion was taken to provide sufficient accuracy.
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The result of this choice was exclusion of data with L < L,;, ~ 15-25 (varying
somewhat between runs). Had a wider interface been used (see § 8.2) then by the same
criterion L,,;,, would be much larger giving very little usable data.

8.4. Compressibility and small-scale structure

The Ludwig code will only work correctly at low Mach number. This requires L. < ¢
where the sound speed is ¢ = 37/2 in lattice units. Since in our simulations L is of order
0.01, we expect the binary fluid mixture to remain incompressible (V- v = 0), at least
at length scales larger than a few lattice sites; in Fourier space, we expect k-v(k) =0
at all but high k. Figure 4 shows the rMs ratio of the radial to the transverse velocity
components in Fourier space as a function of wavenumber, and also the spherically
averaged velocity structure factor, S,(k) = (|v(k)|?), for various runs. Also shown
for comparison is single-fluid turbulencet, generated using a pseudospectral direct
numerical simulation (DNS) code by Young (1999), and a LB run with a single fluid
(no interface) but otherwise the same parameters as Run031 (inertial region).

At low wavenumbers the system is incompressible. At higher wavenumbers, there
is some compressibility, whose effect varies in the different growth regimes. In the
viscous regime, the longitudinal /transverse ratio rises with k, but the velocity structure
factor shows that that all velocity components become small at high k and contribute
little to the overall dynamics. This is still true in the crossover region, where the
compressibility ratio is highest; a peak in S,(k) is found at a wavelength of around
3 lattice spacings. In the inertial region, this peak shrinks, and splits into two (at
around 3.5 and 2.5 lattice spacings). The transverse velocity component is now larger
although still an order of magnitude smaller than the velocity at the peak of S, (k).

Comparison with the single-fluid turbulence, as simulated by both DNS and LB,
shows that these peaks in S,(k) are mainly due to the presence of the interface. Their
presence only in the crossover and inertial runs suggests that perhaps capillary waves
are forming on the interface giving structure in the velocity field on scales of the order
of the interface width. Subsequent visualization work of Pagonabarraga et al. (2001)
showed that underdamped wavelike motion of the interface is undoubtedly present
at large [, but predominantly at wavelengths much larger than the interfacial width.
Another argument against the capillary wave explanation is that no similar bumps
are seen in the order-parameter structure factor S(k) (figure 5).

The nature of the velocity fields close to the interface certainly deserves further
investigation (see, for example, Theissen, Gompper & Kroll 1998 for related work
on a different system). Meanwhile, having some compressibility on the length scale
of the interface itself appears unavoidable within current LB code. Specifically, in
the immediate vicinity of the interface the various diagonal terms in the chemical
contribution to the pressure tensor, (2.10), are individually large, although these
should nearly cancel for a slowly moving, weakly curved interface. Any numerical
error here will lead to local deviations in the fluid density p, even if the bulk fluid
motion is effectively incompressible everywhere else. On molecular physics grounds
also, some coupling between density and order parameter can be expected at the
interface between otherwise incompressible fluids. Such coupling is present in real
physical systems, but care is needed with the current LB code where compressibility
effects also bring violations of Galilean invariance (§6).

1 The single-fluid turbulence simulation method sets the radial component identically to zero
thus guaranteeing perfect incompressibility.
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FIGURE 4. (a) Ratio of the radial to transverse velocity components in Fourier space for various runs.
(b) Velocity structure factor showing relative magnitude of the Fourier space velocity at different
wave vectors. Wavevector axis is labelled by wavelength in lattice units.

8.5. Finite size effects

Various estimates were made of when our (periodic) boundary conditions started to
significantly influence the behaviour of L(T). This included several comparisons of
different sized runs with the same values for other simulation parameters. On this basis,
the data for the 96° and 128 runs were pruned at L = L, = A4/4 before analysis,
and the 256> runs terminated at this point. This criterion is much more conservative
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than in some previous work (e.g. Jury et al. 1999b), and, given L,,;,, limits the range
of L accessible in a single large run to about half a decade [logo(Lyax/Lmin)]- To
balance this, averaging over different runs with the same parameter values should not
then be necessary, since one has in effect (A4/L,,.)’ = 64 different (albeit correlated)
samples being simulated within each run. Indeed, in the crossover and the inertial
regimes, we saw no sign of statistical fluctuations in the L(T) plots.

Interestingly, the same was not true for the extremely viscous runs, which showed
somewhat erratic statistics (see §9). One possible reason for this is the presence of
correlations, in the velocity field, over much larger length scales than L(T), causing
the local coarsening rates in different parts of the simulation to fluctuate coherently.
Long-range velocity correlations are, in fact, clearly visible in the structure factor S,(k)
shown in figure 4. Specifically, for the most viscous run analysed (Run027, Ly, = 36),
S,(k) shows no sign of saturating at low k; instead the data suggest a power law
divergence, and are consistent with S,(k) ~ k=2. (A theoretical argument leading to
this result for the viscous regime is given in § 10.1.) In real space this translates into a
long-range, 1/r velocity correlation extending to either the system size (which is the
likely case in any simulation) or some large physical length scale beyond which the
purely viscous approximation (Stokes flow) breaks down.

If this is correct, it could be practically impossible to avoid finite size effects when
simulating the viscous regime. The most benign outcome is if the main effect is
to correlate (rather than alter) local coarsening rates; this could be countered by
averaging over a number of different runs (Jury et al. 1999b; Laradji et al. 1996).
However, this would have to be done for several system sizes before concluding that
no other finite size effects were present.

9. Order-parameter results

We now present our results for the time evolution of the interfacial structure.
These results can be extracted directly from knowledge of the order parameter using
well-established procedures (see Jury et al. 1999b; Appert et al. 1995; Laradji et al.
1996; Bastea & Lebowitz 1997). We defer to §10 our explicit analysis of the fluid
velocity field.

9.1. Structure factor scaling

The first step in the analysis of the order parameter data was calculation of the
structure factor. The ¢-field saved from the simulation runs was processed through
numerical Fourier transform routines, and the structure factor calculated as

S=— Y pwIeh), ©.1)
K k—n/A<lk|<k+n/4
where ¢(k) is the Fourier transform of the order parameter, and n, is the (actual)
number of lattice sites in a shell of radius k and thickness 2n/A4 in Fourier space
(compare (4.2)).

Dynamical scaling requires that, in reduced physical units, not only the character-
istic length [(t) but also the statistical distribution of different interfacial structures
should be the same for each [. In either the viscous or the inertial regime, there-
fore, the structure factor S(k) should asymptotically collapse onto a single plot when
appropriately scaled, so that in simulation units

L73S(k) = f(kL), (9.2)
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FIGURE 5. (a) Structure factor, S(k), for Run028 (viscous regime) for time steps 14 000-19 000,
L(T) = 38-52. (b) S(k) for Run032 (inertial regime) for time steps 11000-17000, L(T) = 45-64.
Different open symbols denote different times T'; filled circles show the same data corrected at low
k for discretization effects (see text).

with a different function f(kL) in each of the two limits. (More generally, dynamical
scaling allows L73S(k) = f(kL,l), so that the viscous and inertial asymptotes are
f(kL,0) and f(kL,o0) respectively.) Figure 5 shows plots of S(k) scaled in this way for
Run028 and Run032, representative of the viscous and inertial regimes respectively.
The collapse of the structure factor data within each run is good (figure 5) for
length scales larger than about twice the interface width. (The latter is marked as 2¢
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on the graphs, with ¢ = 5&;.) With our definition of L, the peak occurs at kL just
less than one. To the right of the peak there is a shoulder, followed by a reasonable
approximation to a k=* Porod tail. (The Porod tail represents scattering from a weakly
curved interface and should be found in the region & < k=' < L(T), see Bray (1994);
but between ¢ ~ 3 and L, = 64 there is barely room to observe it cleanly.) The
ragged sections of S(k) in the low-kL region corresponds to the first two k-shells
which have few k points and so poor statistics. The filled symbols are the same data
corrected to allow for the fact that the average value of |k| in such a shell differs
from the nominal shell radius; the corrected result suggests no deviation from scaling
even at low k, although the data there are less reliable than in the high-wavenumber
region.

The collapse between different runs (not shown) is also good, so long as one
compares runs chosen within either the viscous or the inertial regime. However, as is
visible from figure 5, the shape of S(k) does evolve significantly between one regime
and the other. In particular, the shoulder to the right of the peak is lower in the
viscous regime than the inertial regime. This implies that the domains are a subtly
different shape in real space, perhaps more evenly rounded in the linear regime since
the peak is effectively a little sharper. This may be linked to an increased number of
relatively narrow necks in the inertial runs (large I), as first suggested by Jury (1999)
and recently confirmed by direct visualization of LB data, Pagonabarraga et al. (2001).
Our structure factor results, taken piecewise, are compatible with those of Jury et
al. (1999a), Appert et al. (1995) (simulation), Chen et al. (1993) (experiment), and
several other authors (see Appendix B). However, our study is the first to cover a wide
enough parameter range to show a clear distinction, in the shape of S(k), between the
viscous and inertial regimes.

Runs in the crossover region also show reasonable data collapse within each run,
with a shape intermediate between the two shown in figure 5, and very similar to that
found by Jury et al. (1999a) in the same region of the I(t) curve. Note that a good
collapse, within or between runs, cannot be expected a priori in the crossover region.
It arises because the [-dependent scaling function f(kL,[) in fact evolves so slowly
with | that any data spanning less than a decade or two in [ are insensitive to the
I dependence. This is a consequence of the extreme breadth of the crossover region
(quantified below).

9.2. Evolution of the characteristic length scale

The characteristic length scale L(T), defined via (4.1), has been calculated for the eight
2563 runs in table 2. The order-parameter data were coarse-grained to 128* before
analysis, but comparison with smaller runs confirmed that there was no effect of this
on L(T) within the ‘good data’ range, defined as L,,;, < L < Ly, with Ly, fixed by
our criterion on residual diffusion (§8.3) and L, = 64 as required to exclude finite
size effects (§8.5). Figure 6 illustrates how the fitting was done.

To parameterize the time dependence of L(T), the ‘good data’ were fitted, for each
run separately, to the following form

L=uv(T — Tin)" (9.3)

(equivalent to (4.9)), where v, T, and o are fitting parameters. A nonlinear curve-
fitting utility was used to create the fits, which all fell within a specified tolerance
of 1%. However, some trade-off is possible between the three fit parameters and a
realistic uncertainty estimate for the exponent, o, is around 10% for the first three
runs in table 2, and 5% for the rest. The fits are shown in figures 7 and 8, which also
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Fits at 2% diffusion

L., at diffusion

Fit Fit 1%
Run Ly o v T Up 2% 1% o
Run028 36 0.88 0.0096 1948 0.41 20.0 28.5 0.81
linear fit 1.0 0.00028 516
Run022 59 0.86 0.023 304 0.64 26.0 38.0 0.88
linear fit 1.0 0.00605 —524
Run033 59 1.16 0.0012 442 0.48 17.5 249 1.12
linear fit 1.0 0.0060 1445
Run029 0.95 0.95 0.0175 1020 0.54 15.3 21.7 0.92
Run020 0.15 0.80 0.0418 603 0.60 234 349 0.80
Run030 0.01 0.75 0.0747 1362 0.51 14.8 224 0.76
Run019 0.00095 0.67 0.134 1008 0.60 21.5 33.8 0.66
Run032 0.0003 0.69 0.0833 1855 0.48 19.0 29.8 0.69

TaBLE 5. Fits and lower cut-off, L,,,, for 256> runs. The parameter vp is the fit parameter
corresponding to v in the presence of diffusive growth only (see §8.3).
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FIGURE 6. L vs. T (unscaled) for Run030, illustrating the fitting procedures.

show the diffusion-only data used to determine L,;, as described in §8.3. The fitted
results are summarized in table 5.

The data show o values ranging from 1.12 to 0.66 with a decreasing trend as L
is decreased. Certainly, an increasingly negative curvature of the L(T) plots with
decreasing Lo is apparent from figures 7 and 8. However, the resulting fit parameters
were relatively erratic for the three runs of largest Ly (expected to lie in the viscous
regime). Indeed, we found o = 0.86,v = 0.023 and « = 1.16,v = 0.0012 for two runs
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Ficure 7. Fitting L(T) and Lp(T). Lp is the length scale found by repeating the simulation
at infinite viscosity, allowing assessment of the role of residual diffusion. (a) Run028, L, = 36;
(b) Run022, Ly = 5.9; (¢) Run033, Ly = 5.9; (d) Run029, Ly = 0.95. Solid lines, full set of recorded
L(T) data; +, data points used for fits with L,;, set by 2% diffusion; O, data points used for
fits with L,;, set by 1% diffusion; A, data points used for fits to diffusion-only data. Table 5
summarizes the main fit results.

with the same nominal Ly. This was partly due to a relatively ill-conditioned fit as
can be appreciated from figure 7. (A second possible cause of the erratic fits is the
presence of long-range velocity fluctuations; see §8.5.)

Therefore it was decided to refit the data for the three most viscous runs, imposing
o = 1, the anticipated value. This yielded much better consistency among the fitted
values of v, which with viscous scaling should obey (Ty/L¢)v = by, where by is
universal; with the forced linear fits this was indeed the case with b; extracted as
0.073,0.072,0.072 +0.02 for the three runs under discussion. Subject to this, we obtain
a range of values of o from 1.0 (Run028, Run022 and Run033) to 0.67 (Run019),
with intermediate exponents 0.95 (Run029), 0.80 (Run020) and 0.75 (Run030) at
intermediate Lo. This suggests that the simulations have indeed covered the viscous,
crossover and inertial regions. However, the ultimate test of this is to convert to
reduced physical units and construct the /(¢) curve explicitly.

9.3. Universal scaling plot for I(t)

Our method for combining the data from different simulation runs to give the I(t)
curve follows Jury et al. (1999b). As is apparent from definitions (1.1), the only fit
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FIGURE 8. As figure 7 but for (a) Run020, Ly = 0.15; (b) Run030, Ly, = 0.01;
(¢) Run019, Ly = 0.00095; (d) Run032, Ly, = 0.0003.

parameter that is actually needed when converting L(T) data to reduced physical
units (/(t)) is the intercept, T;,. Then one uses the known density and viscosity, and
the measured interfacial tension, to complete the conversion.

Figure 9 shows the [(¢) data from all the runs in table 2 combined on a single
log-log plot. Note that for the two runs of Ly = 5.9 the resulting data collapse is much
improved by the forced linear fit (giving two very different values of the non-universal
offset T;, instead of two disparate values of «). With the former, the two datasets
overlie on the I(¢) plot but with the latter they do not; this helps to vindicate our
choice of fit. Apart from a similar reservation about force fitting o for the most
viscous run (Lo = 36), the [(t) curve is free of adjustable parameters. Although we did
not have resources to cover the entire curve with data, there is no evidence for any
breakdown of universality: the various runs do appear to liec on a smooth underlying
curve. (In particular, the two most inertial runs virtually join up.)

The apparently universal [(t) curve shows scaling that is first linear (I = b;t, with
by = 0.072 £+ 0.02), then passes through a broad crossover region before reaching
| = byy3t*3 (with by/; = 1.0 + 0.05) at large [, t. The positions of the crossover and
inertial runs on the graph are in keeping with the trend for the scaling exponent,
o, fitted directly from each run. This confirms that the exponents determined from
our fitting procedure do accurately reflect what is going on in these simulations. The
extreme breadth of the crossover regime, 10° < t < 10°, justifies the use of a single
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FIGURE 9. Scaling plot in reduced variables (L/Lo, T /Ty) for 256 LB data. Dots (left to right) are
the runs in table 2 (top to bottom). Dashed lines show free exponent fits for the first three data sets
in table 2 for comparison with linear fits (dots).

exponent to fit each run (4.9) or (9.3) even in the crossover region: no single run is
long enough to see a change in exponent from beginning to end beyond the estimated
errors. There is no hint that the exponent is reducing still further to o« < 1/2, as
predicted by Grant & Elder (1999), although a further crossover beyond the range of
I, t reached in these simulations cannot be ruled out.

Recall that intersection of asymptotes on the I(t) plot defines t*, the characteristic
crossover time from viscous to inertial behaviour. As mentioned previously (§4),
scaling theory says only that ¢* is ‘of order unity’. The measured value is close to
104, a value that should raise no eyebrows in the turbulence community but may
do so among workers in phase separation kinetics. Since b,;; is very close to 1,
the largeness of t* can be traced to the smallness of b; and to the relatively minor
change in exponent on crossing from viscous to inertial scaling: for by its definition,
t* = (bi/b,)"/*~*) where subscripts v,i signify viscous and inertial values.

Note too, the huge range of scales covered by the combination of eight simulation
runs: five decades of length and seven decades of time. This achievement is only
possible by fully exploiting the expected scaling. This means that, although our work
is capable of falsifying the scaling hypothesis (our /(t) plot might not have joined up,
and might yet not do so when more data is added), its non-falsification in our work
may not represent persuasive proof that the scaling is true.

For, as mentioned previously (§7), to navigate the I(t) curve we are forced to
correlate the simulation parameters in a systematic way. Hence if the coarsening rate
was in fact dependent on M, say (for example by being pinchoff-limited, Jury et al.
1999b), this would not necessarily show up as bad data collapse in figure 9, since M is
strongly correlated with Ly and/or Ty. In principle, however, our parameter steering
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has no effect on data within a run, so that any ‘steering-induced’ data collapse could
in principle be detected because curves would not quite line up with their neighbours
on the plot, although their midpoints would lie on a smooth curve (Jury et al. 1999b).
Although we believe this is not happening for our [(t) data, we do not have enough
results to entirely rule it out, especially as something similar does occur in our own
velocity derivative data (§11).

Our results for the evolution of the interfacial structure are compared with those
of previous authors in Appendix B.

10. Results for the fluid velocity

Owing to data storage limitations for the largest (256°) runs, our velocity analysis
also made extensive use of the 128 runs listed in table 3. The velocity field was
analysed as a single, continuous field, filling the whole simulation; there is no explicit
information about the location of the interface between the two fluid phases. However,
visualization of the velocity field was done using the AVS package and examples (one
viscous, one inertial) are shown in figure 10, where the flow patterns can be compared
with the domain structure defined by the interface.

There are almost no prior data on fluid mixtures with which to compare these
results. A simulation using a pseudospectral method written by Young (1999) was
therefore used to generate a velocity field for single-fluid, freely decaying turbulence
with a similar Reynolds number to those of the spinodal system in the inertial regime.
A velocity map for this single-fluid turbulence is also pictured in figure 10.

A trend from locally laminar flow to more chaotic motion is apparent in passing
from the viscous to the inertial regime. The vorticity map in the latter case is
comparable to the one for the turbulent single fluid (not shown). However, the
comparison is hindered by the fact that the interfacial motion at length scale L
introduces a ‘whorly’ velocity pattern even in the purely viscous flow regime. A better
discriminator between the two regimes, pursued elsewhere, comes from watching the
time evolution of the interfacial structure itself, which is clearly underdamped in the
inertial case, Pagonabarraga et al. (2001).

10.1. Velocity structure factor

The velocity structure factor was introduced in §8.4. For numerical purposes we
define it (following (9.1)) as

S, (k) = S > v(k) - v(—k). (10.1)

N
k—mn/A<|k|<k+m/A

The results have already been shown in figure 4, where S,(k) is depicted for three
of the runs in table 3, alongside two calculations (LB and spectral) for single-fluid
turbulence. These structure factors are in unscaled units but in each case correspond
to a point during the run where the domain size is around 30 lattice units.

The bumps on the S,(k) curves at high k were discussed in §8.4. But even apart
from these, the velocity structure factors have very different shapes in the viscous
(Run027), crossover (Run018) and inertial (Run031) regimes; these differences are
much larger than for the order-parameter structure factor (figure 5). In other words,
the geometry of the fluid flow is changing much more significantly, as one moves
along the I(t) curve, than the geometry of the interface.

We return to this in §10.2, but first address an issue raised in §8.5, which is
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(b)

FIGURE 10. Pictures of interface and velocity maps in viscous and inertial regimes. (a) Interface
(left) and velocity field (right) for Run027 in the viscous region at time step 8500, when the domain
size is about 21 lattice units. (b) Interface (left) and velocity field (right) for Run031 in the inertial
region, for time step 5000 when the domain size is about 22 lattice units. Only a 32° section of the
simulation is shown (the same section for both interface and velocity). The velocity is shown for
the front two lattice planes only for clarity. Arrow colours and lengths indicate speed (long/red =
fastest through yellow, green to blue/short = slowest). (¢) (left) Interface (green) for Run031 with
the red interface at a contour of 50% of the maximum vorticity and thus enclosing regions of high
vorticity. Velocity from single-fluid turbulence (right). Turbulence has Re; ~ 10, matching that of
the most inertial run, Run031. The vorticity for single-fluid turbulence (not shown) is qualitatively
similar to that shown for Run031 (left).
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the apparent k—2 divergence in S,(k) at low k in the viscous regime. This can be
qualitatively explained as follows. In a purely viscous approximation (Stokes flow)
the NSE (3.2) becomes in Fourier space

nk*v(k) = —ik - 22" (k). (10.2)

Here 22" contains the chemical term 22" which is mainly localized on the interface
between the two fluids. We now argue that this term is strongly correlated at length
scales up to the domain size L but not larger ones: this means that, for low wavenum-
bers (k < m/L) it is a random variable with short-range correlation. Ignoring for
simplicity all tensor indices, one thus has (|22"(k)|?) — 7, a constant, as k — 0. From
(10.2) we find immediately
X

Sy(k) ~ peTes (10.3)
Thus the long-range, Stokesian hydrodynamic propagation converts short-range fluc-
tuations in 22" into long-range fluctuations in the fluid velocity. As mentioned in
§8.5, the resulting divergence could lead to erratic coarsening rates and/or problems
with finite size effects, throughout the viscous regime. This appears not to have been
noticed by previous authors.

There is a related anomaly that arises in colloidal suspensions under gravity,
although in that case the short-range fluctuations are in the density, which is effectively
a random body force, rather than in a random stress: see Segre, Herbolzheimer &
Chaikin (1997).

10.2. Length scales from the velocity field

The velocity structure factor, S,(k), can be used to calculate a velocity length scale,
L,(T) analagous to L(T) (compare (4.1)):

(10.4)

This length measure was found to be insensitive to coarse-graining in nearly all cases.
Data collected for L,(T) from the 2563 runs were converted to reduced physical units,
using the values of T;, already obtained from the L(T) fits and given in table 5.
(Hence no further fitting was involved.) The resulting scaling plot is shown, alongside
the I(t) data presented earlier, in figure 11(a). The results in the inertial regime show
a strong convergence between [, = L,/L and [ = L/Ly: the velocity length [, shows
the same t*/3 scaling as [, with a similar prefactor. This is not obvious a priori, since,
as mentioned above, the shapes of S,(k) and S(k) are very different.

More surprisingly, we find that to a fairly good numerical approximation, I,(¢)
shows a t*/3 growth throughout the crossover region, and that this even extends far
into the viscous regime, within which [, exceeds the domain scale | by a significant
factor. However, as the viscosity is increased to access the bottom left corner of the
plot, the data are increasingly affected by finite size effects, since L, then is comparable
to the system size 4. These are especially pronounced for the most viscous run (with
L, almost constant during that run). Allowing for these effects, the data are consistent
with I, ~ t?/* at all times; however we have no reason to expect this result in the
viscous regime, where both the simple and the extended scaling analyses (§§4, 5)
predict instead [, ~ [ ~ t. Note, though, that the velocity length measure chosen
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FIGURE 11. (a) L,(T) (dashed) compared with L(T) (solid) for runs in table 2. (b) For runs in table
2, reduced interface velocity, [(t) (solid) compared with the Rms fluid velocity measured in reduced
physical units (dotted).

(10.4) is sensitive to the low-k divergence found above in S,(k), which would give a
contribution of order A4/In A from the lower limits of integration. It is possible that
for the parameters and system sizes used here, this size-limited contribution combines
with those from higher wavevector to give an apparent 2/3 power in the viscous
regime.



Inertial effects in spinodal decomposition 181

Alternative length measures may be found by taking the ratio of two other suc-
cessive moments of S,(k), to replace (10.4). Adding one extra power of k to the top
and bottom integrand gives a length measure that lies between /, and [ throughout
the viscous regime, reducing the exponent discrepancy there, but without attaining
the linear scaling of [ itself. For more than two extra powers of k the scaling gets
worse, not better, as the integral in the denominator becomes dominated by high-k
contributions.

10.3. Average velocities

The rus fluid velocities (spatially averaged) were calculated for all the runs in table
2 and are plotted in reduced physical units in figure 11(b), alongside the reduced
interface velocity [(t) derived from the order parameter.

In the most viscous run, Run028, the rms fluid velocity is larger than the interface
velocity. Both velocities are fluctuating quite far from the expected constant behaviour
in the linear region, and the fluctuations are more or less in step. This may in part
be a facet of the erratic, finite-size-limited behaviour seen in the far viscous regime
(§8.5).

Otherwise we observe that the rMs fluid velocity matches the interface velocity in
the viscous and early crossover regions, but grows larger than it in the inertial region,
by about 40% at the largest [,t. The two most inertial runs (Run019 and Run032)
appear to have the rRMs velocity scaling with a slightly different exponent than the
interface velocity (approximately as t~'/4 rather than t~!/%), though this may not be
significant. Such a deviation is foreseen by neither the simple nor the extended scaling
theory, both of which have velocities scaling as v ~ [ at all times. It would imply a
buildup of kinetic energy in the fluid beyond that predicted by either scaling analysis.
The excess may be caused by our approaching the limits of numerical accuracy in
resolving velocity gradients with a consequent breakdown in energy conservation
(see §§11.5, 11.8 below). A similar breakdown, caused instead by having too high a
viscosity in lattice units (as indicated in §7), may likewise contribute to the excess
RMs velocity seen in the most viscous run.

10.4. Velocity distributions

The PDF of the velocity components in a homogeneous, isotropic turbulent fluid is
known to be almost Gaussian, and uncorrelated over large distances in both space and
time. Non-Gaussian behaviour is found only in velocity increments and derivatives
(e.g. Monin & Yaglom 1975).

The spinodal system is crucially different: it has a structural length scale L(T),
and correlations and inhomogeneity can be expected at this scale. Hence the velocity
components themselves can show non-Gaussian PDFs. The departures are expected
to be seen through the fourth moment, since there is no preferred direction in space
that would allow one to create a scalar from a third moment of velocity. (The
third moment was checked and found to be close to zero.) The fourth moment is
characterized by the flatness, (v})/(v?)? — 3, with « a Cartesian index; this vanishes
for a Gaussian distribution.

Figure 12(a) shows the flatness for runs in table 3 as a function of time; a distinction
is drawn between viscous runs (those with Ly < 0.5) and crossover/inertial runs (with
Lo > 0.5). It can be seen that the flatness is quite variable, but as a general trend
it grows slightly with time through each run, and also grows with decreasing Lo
(increasing inertia). The velocity PDFs show correspondingly wider tails and narrower
peaks than for a Gaussian; an example for Run032 is shown in figure 12(b). The shape
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FIGURE 12. (a) Flatness of velocity components for runs in table 2: Ly > 0.5 (crosses) and Ly < 0.5
(squares). Single-fluid turbulence (filled triangles) is shown for comparison. (b) PDFs of velocity
components for Run032 at time step 12000, with Gaussian pPDF (solid) and transverse velocity
derivative (dashed) shown for comparison.

is close to that found in the transverse velocity derivatives in the same system (shown
dashed for comparison). These non-Gaussian effects are much more pronounced in
the inertial than in the viscous regime.
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11. Velocity derivatives

We now turn to the analysis of spatial derivatives of the velocity field. Velocity
derivatives are of two types, longitudinal, e.g. dv./0x, and transverse, e.g. Ov./0y
or dv,/0z. Representative velocity derivatives (in fact, dv,/dx, dv,/dy, and 0Ov,/0x)
were calculated. The differentiation was done by calculating ik.v,(k) etc., and Fourier
transforming back to real space. The derivatives are unambigous so long as the
gradients of velocity are small on the scale of the lattice spacing, but otherwise the
resulting gradient is not the same as taking a lattice derivative (which we define via
(6.19) with v replacing ¢). In practice we have found significant (~40%) discrepancies
the two methods; these were investigated in the context of energy conservation and
are discussed further in §11.5. For many purposes there is no particular reason to
prefer the lattice to the Fourier definition and we retain the latter for simplicity.

11.1. Skewness of velocity distribution

In fully developed turbulence the skewness of the longitudinal velocity derivatives
approaches —0.5 (e.g. Monin & Yaglom 1975). (The skewness of a variable y is
(y*)/{y?)*/2.) The transverse derivatives have zero skewness, by symmetry, but positive
flatness.

Figure 13(a) shows the skewness of the longitudinal velocity derivatives against
time for the three most inertial runs in table 3. Also shown for comparison is the
skewness from the freely decaying turbulence simulation. In the two most inertial LB
simulation runs, the skewness of the longitudinal velocity derivative reaches around
—0.35. A plausible interpretation of this result is that patches of turbulence arise, but
do not fill the whole system; if the patches have skewness —0.5, the overall value is
less. From visualizations (see figure 10) we know that the interface remains smooth
so that any turbulent regions should be in the middle of the fluid domains.

To test this idea further, a 96° run with the same parameters was done, and at
time step 5000 (when the domain size was about 21, after residual diffusion had
decayed to an acceptable level) the interface was suddenly removed by setting the
order parameter to 1 throughout the system. This converted it into a single fluid with
the same velocity field, which was then allowed to evolve. The longitudinal velocity
derivative skewness for this run is shown in figure 13(b), with Run031 and the single-
fluid turbulence data repeated for comparison. Once the interface was removed, the
skewness quickly jumped to around —0.5 from —0.35, providing strong support for
the ‘turbulence in patches’ hypothesis; it appears that on removal of the interface,
the turbulence rapidly infects the whole system. (Fairly soon after this, the system
became numerically unstable causing the skewness to rise rapidly back toward zero
as spuriously large velocities were generated; this is visible in figure 13, but was not
investigated further.)

11.2. Reynolds numbers

In this work we choose to regard all Reynolds numbers as estimates of the RMS ratio,
Ry, of the nonlinear term to the viscous term in the NSE (3.2), as defined in (5.2).

In practice, Reynolds numbers are usually constructed (via Re = Ty/v/L3) from a
characteristic length (/) and a characteristic velocity (v). In a homogeneously turbulent
single fluid, the usual choice of velocity scale is vrys. Also, the length measure £ must
itself be constructed from the velocity field; various choices then arise. One is the
integral scale, defined (to within prefactor conventions) as Ly, = (3n?p/2E) [ kS, (k) dk
where E = 2mp [ kS,(k)dk is the total kinetic energy. (This a close relative of our
L, (10.4).) A second is the Taylor microscale, /, defined in (5.7). A third length is the
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Kolmogorov microscale, 4, (5.8), but this is not normally used to form a Reynolds
number. In practice, most isotropic homogeneous turbulence simulation studies use
as Reynolds number Re;, = pvrms4/#n. This should give a reasonable estimate of the
ratio R,, because as noted in § 5, 4 is the length scale associated with the V operator
in Vo. But note that, according to the extended scaling analysis (table 1), it is still not
an accurate estimate asymptotically at late times: there one has the prediction that
Re; ~ Jv ~ TV® while R, ~ T°.

In the spinodal system an obvious alternative to Re; arises from choosing L(T), the
domain size, as the length scale; either vrys or the interface velocity L can then be used
for the velocity scale. However, the resulting Reynolds numbers, Re; = pLvrms/7,
and Rey = pLL/n (see (5.4)) are not directly comparable with Re;, which is always
much smaller.

All three quantities are shown as functions of the reduced time ¢ in figure 14(a).
There is little difference between Rey and Re; ; both show reasonable scaling, with
the deviations in the most extreme runs stemming from those already discussed in
§10.3. The large-t asymptote for Re, in the inertial region is approximately Rey ~ t'/3
as predicted by both the simple and the extended scaling analysis (but questioned by
Grant & Elder 1999). Our simulations are in the range 0.1 < Rey < 350, and the
crossover region occupies the range 1 < Rey < 100. Thus in terms of Rey (rather
than t) the crossover is not, after all, quite so broad.

In contrast to Re; and Regy, the data for Re; do not show good scaling behaviour.
The overall trend is of linear scaling in the viscous region and slower growth at
around t'/¢ in the inertial region; both are broadly consistent with the extended
scaling theory (see table 1). However, the individual runs do not line up onto a single
curve. This non-scaling behaviour of Re, can be traced to that of A itself, which is
examined in more detail in §11.8.

11.3. Ratios of terms in the NSE

Shown in figure 14(b) are the actual RMs ratios R; and R, defined in (5.1) and (5.2)
respectively. (Recall that the latter is the ratio of nonlinear to viscous terms in the
NSE, which is what we believe a Reynolds number should estimate.) In order to form
these ratios, one must first evaluate (RMs values of) the three relevant NSE terms,
nV?v, p and p(v-V)v, which are vector quantities at each point in space. An RMS value
is calculated as |flrms = ((f3) + (f3) + (f2))"/% where f, f, and f. are the Cartesian
components of the vector f = yV?v (for example), and the average is taken over
the whole system. The first- and second-order spatial derivates of the velocity were
found from k-space data (as in §11.1) on 96° and 1282 runs; a further complication
is that to evaluate @, velocity data from consecutive time steps are required. Owing
to data storage constraints, these were only collected for a set of 96 runs. This is
large enough to obtain R; values for a domain size just larger than L,;,, but not
to determine its time dependence accurately within any particular run; checks were
made for consistency by comparing other quantities with 128* data.

The values of R; and R, shown in figure 14(b) lie between Re, and Re; but are
closer to the latter. The two ratios remain the same order of magnitude as each other
throughout, but vary by three orders of magnitude, from R, ~ 1072 at the viscous
end (indicating that the viscous term is dominant by two orders of magnitude) to
R, ~ 10! at the inertial end (indicating that the inertial terms are dominant by
one order of magnitude). Though we cannot calculate it directly, R, is presumably
somewhat higher (about 20) towards the end of our most inertial 256° run. This
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confirms the claim made in §9 that our simulations have reached a regime where the
inertial terms are dominant in the dynamics.

Looking more closely at the behaviour of R; relative to Ry, there is a significant
difference in the crossover region, by around a factor of two (R; > R). Then, in the
inertial regime, R; becomes less than R, by about 50% and appears to be heading
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for a lower growth rate. This deviation suggests that the asymptotic behaviour of
these two ratios is perhaps going to be different. That would be consistent with the
extended scaling predictions which are (table 1) that R; ~ t~'/¢ while R, — constant;
but if so neither curve is close to its final asymptote yet.

That the LB simulations are still far from the final asymptotic behaviour in our
most inertial runs, even though inertial terms are clearly dominant there, is not
unreasonable. The largest ratio R, ~ 20 actually achieved in our simulations is, by
turbulence standards, still a fairly low Reynolds number. If the extended scaling
theory of Kendon (2000) is correct, the final asymptotes for quantities relating to
fluid velocity cannot be attained until an appreciable ‘inertial range’ has developed
between the interfacial driving scale L(T'), and the smaller scales (4, 4;) where energy
dissipation is taking place. However, to observe scaling of [(t) for the structural (as
opposed to velocity) data, it may not be necessary that the inertial cascade is fully
established; one might only require that a reasonable degree of decoupling between
interfacial motion and viscous dissipation has taken place. Our results for [(t) suggest
that this has already happened by the time R, = 10.

11.4. Structure factors of the NSE terms

Further information on the behaviour of the NSE terms can be obtained by calculating
the structure factor for each term. (These are (|f(k)*) where f = nV?v,v+ Vv or pb.)
Results for one viscous and one inertial run are shown in figure 15. Looking first at
the viscous run, the structure factor of the viscous term takes the form of a broad
peak stretching from a small bump at wavelengths around 12 lattice units (which is
around half the domain size, L(T) = 25), down to the interface width, ¢ ~ 3. Thus
the dissipation is taking place over the smaller length scales in the system. (The small
bump is a manifestation of the domain size in the dynamics; it is present at around
L(T)/2 throughout the run.)

In the inertial regime, the viscous term is, as expected, smaller than the inertial
terms. The viscous term is similar in shape to that in the viscous regime, with the
addition of two large peaks at high k that presumably arise from the presence of
the interface (compare §8.4) and/or lattice effects. This suggests perhaps that the
largest dissipative forces, and therefore most dissipation, are happening close to the
interface (or at least on that length scale). The acceleration term has a broad peak
in the structure factor at wavelengths around L = 25, and tails off quite sharply
below 10 lattice units. The nonlinear term has a structure factor with a broad peak
centred around 15 lattice units, intermediate between the length scale of the interface,
L(T) = 25, and the dissipation length scales.

The overall picture, though not quantitative (in view of the numerous sources of
uncertainty, especially in the velocity derivatives) is qualitatively consistent with the
extended scaling picture, in which the nonlinear term transports energy from large to
small scales, where it is then dissipated. But in these runs there is still considerable
overlap between the length scales for each term, as expected at relatively low Reynolds
number.

11.5. Energy conservation, dissipation rate

The dissipation rate is crucial to the energy balance in the simulation. The LB
algorithm is isothermal, and therefore does not strictly conserve energy, in that the
energy dissipated as heat by the viscous stresses is taken out of the system locally
rather than having to diffuse thermally to the boundaries. Nonetheless, the simulation
should faithfully recreate the energetics of the isothermal Navier-Stokes equation,
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driven by interfacial motion (as in (3.2)), which makes precisely the same assumption.
In the inertial regime, the interfacial energy should first be transformed into kinetic
energy of the fluid; the observation of [ ~ t*/3 (see §9.3) shows that this is happening
at roughly the expected rate. To complete the energy balance, energy must also
be removed from the simulation at the correct rate through viscous dissipation.
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This requires accurate modelling of the smaller length scales (4 — ;) at which such
dissipation is taking place.
The dissipation rate can be calculated directly from the velocity data as

& = n((Vaop)(Vatp)) = n / K25, (k) O, (11.1)

where the angle brackets are spatial averages and both the incompressibility (V,v, = 0)
and homogeneity ((v,vp) = (1/3)d44Ss(k)) of the binary fluid system have been ex-
ploited. The second expression is tantamount to using the Fourier definition of spatial
derivatives, and as mentioned previously, this need not coincide with lattice deriva-
tives when gradients are not small. Therefore the dissipation rates were calculated
first using the Fourier space expression in (11.1) and then, for some but not all runs,
using the real-space expression with the lattice gradient operator as defined in (6.19).

The two estimates (Fourier and lattice) of the dissipation rate were compared
with the rate of decrease of the sum of the interfacial energy and the fluid kinetic
energy in the system: these should balance, once the interfaces are well formed and
residual diffusion has become negligible. (Note that diffusion introduces its own
contribution to the dissipation, not accounted for in the NSE, which may dominate
early in each run.) We found that the lattice derivatives gave better agreement than
Fourier ones in this comparison. However, even with these, the results were never
more than satisfactory: best in the crossover region (within 25% of the expected
value) but giving dissipation rates well above those required by energy conservation
in the viscous regime, somewhat below in the inertial. At the viscous extreme the
discrepancies were a factor 3 or more. Even in the crossover region, there was a
tendency for the computed dissipation rate to drift below that required for energy
conservation. Examples are shown in figure 16. Use of Fourier derivatives to estimate
the dissipation rate instead gave values that were consistently too high, through all
regimes, by a factor 2 or so for runs in the crossover and inertial regimes and much
more than this in the viscous regime.

A check was made to ensure that these discrepancies in the dissipation rate did
not arise from compressibility effects, by computing the full expression for ¢, without
assuming fluid incompressibility as was done in (11.1). (See Landau & Lifshitz 1959 for
the relevant expression.) This check was done with lattice derivatives; the results did
not differ appreciably from the lattice version of (11.1), showing that compressibility
is not responsible here.

The fact that the two methods of finding derivatives differ shows that dissipation
is primarily taking place at short scales (of order a few lattice spacings). The results
do not imply that the LB code is failing to conserve energy, but do show that the
viscous dissipation actually generated by the algorithm is not accurately estimated
from the Fourier derivatives; the lattice difference estimates for ¢ are better, but still
not accurate. In principle even these need not give the true dissipation since the LB
algorithm actually dissipates energy by relaxing the velocity distribution functions
(6.5), and not by calculating lattice gradients. Note, in any case, that for qualitiative
comparisons between runs (requiring log-log plots covering many decades) the factor
2 difference between Fourier and lattice derivatives is barely detectable, and we ignore
it, for those purposes, below.

For the dissipation rate itself, simple scaling theory predicts that ¢ will always scale
as 2. Kendon (2000) predicts the scaling to be ¢ ~ t72 in the viscous region, but
¢ ~ t75/3 in the inertial region (table 1). A scaling plot of the (Fourier) dissipation
rate (in reduced physical units, as usual) is shown in figure 17(a). To the accuracy
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at which we are working, these data barely discriminate between the two scaling
predictions though the upward curvature may slightly favour that of Kendon (2000).
There is some sign in the viscous regime that the rate increases too fast; this might
be connected with the velocity anomalies discused previously (§ 10.1).

11.6. Taylor and Kolmogorov microscales

The Taylor and Kolmogorov scales were defined in (5.7) and (5.8) respectively.
Figure 17(b) shows A, 4, in simulation units for each run in table 2 and table 3. Values
are evaluated mid-run at time T such that the domain size L(T) = 30, but plotted
against the reduced physical time. The curves thus have the same shape as a scaling
plot of 2/L(T) and A;/L(T) (since L(T) is here fixed in simulation units) but also
allow the 4,7, values to be compared with the lattice spacing (unity) and the linear
system size (128 or 256). Given the expected effects of coarse-graining on the 256
data at short length scales, the agreement between the two lattice sizes is satisfactory
but only the 128* data are discussed in what follows.

As can be seen in figure 17(b), A/L(T) does not vary by much among runs, although
it is roughly a factor of 2 larger in the crossover region than in the viscous and inertial
extremes. The extended scaling analysis (table 1) predicts that 1/L(T) ~ t~'/ in the
inertial region, and the data are broadly consistent with this; an asymptotically
constant ratio, predicted by simple scaling, is marginally less plausible though not
ruled out. Likewise, 24/ L(T) is not far from the prediction of the new scaling theory
(t71/%), and perhaps somewhat further from that of simple scaling (t~'/¢). For the
viscous regime, however, 4;/L(T) does not appear to scale as t~'/2, nor does A/L(T)
approach a constant, as predicted by both scaling theories. Once again the low-k
velocity anomaly (§10.1) in the viscous regime could be to blame for this, but so
could inaccuracies in the estimated dissipation rate (§ 11.5).
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11.7. Resolution of the energy cascade

The Kolmogorov microscale has a further significance for any attempt at numerical
simulation in inertial fluids. In a fully turbulent fluid, 4, is expected to be smaller
than A, and to mark the smallest length scale relevant for dissipation. This should,
if the results are to be relied upon, be ‘resolved’, that is, 4; should lie above the
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discretization scale set by the lattice. There is some debate over exactly how small
Aqs can be in relation to the lattice spacing, but a factor of 1.0 to 1.6 has been put
forward; see for example, Eswaran & Pope (1988) and Yeung & Brasseur (1991). Our
best estimate for 4, in the most inertial (256°) run is around /; = 1.8 lattice units;
values are higher in all other runs. However, in view of the quantitative uncertainty in
our velocity derivative estimates (see § 11.5), this estimate is good to only a factor of 2
or so. Therefore, the most inertial of our 2563 runs is certainly close to the resolution
limit, and we would not wish to proceed to higher [,¢t without a larger system size.
Note that only in that run is 4; appreciably smaller than 4 as expected asymptotically
in a turbulent flow; but the Taylor scale 4 is well-resolved, by the same criterion, in
all runs.

However, estimates of how well the cascade is resolved using these two lengths
could be misleading, in that they assume local as well as global homogeneity. So if,
for example, most of the dissipation were to occur in a thin layer around the interfaces
in the system, the globally averaged 1; might suggest that the dissipation was fully
resolved whereas in fact it was not. This would be consistent with our findings (§11.5)
that the actual dissipation rate in the LB runs is poorly estimated from the Fourier
velocity derivatives, and imperfectly even from lattice ones.

On balance, we believe that the energy cascade is adequately resolved in most of
our LB simulations, at least for the purposes of producing the correct evolution of
the structural length scale [(t). (As noted in § 11.3, a fully resolved cascade might not
be needed for this, so long as there is sufficient decoupling of interfacial motion and
viscous dissipation.) However, the most inertial runs may well be marginal in terms
of resolution; in common with several other aspects of the simulations (such as the
residial diffusion, and anisotropy), these runs are at the limit of what is possible using
this simulation method with current computational resources.

11.8. Apparent scaling violations

In our various analyses of the velocity derivatives, we focused mainly on scaling
plots made by taking a representative ‘mid-run’ data point from each LB simulation
run (e.g. figure 17a). These plausibly connect to form a smooth curve. However, one
test of scaling is whether the full datasets (rather than a representative point) from
different runs appear to join up smoothly when plotted in reduced physical units;
this was satisfactorily the case for the structural data [(¢) (figure 9) and reasonable
also (though not by any means perfect) for the velocity data [,(t) (figure 11a), Rer,
and Rey (figure 14a).

However, the expected scaling within runs failed completely for Re; (also in fig-
ure 14a). This quantity differs from the others just mentioned in that its definition
involves A, which in turn involves the dissipation rate ¢ (see (5.7)) and therefore
depends on velocity derivatives. More generally, we find similar ‘scaling violations’
in all the quantities we have looked at that involve calculating velocity derivatives.
Figure 18 shows this for (a) the various RMs terms in the NSE and (b) the Taylor and
Kolmogorov scales. The dissipation rate (not shown) shows similar features.

Apart from the failure of the runs to join up, the data for the NSE terms are in
reasonable accord with the scaling predictions (table 1) for the viscous term of =2 in
the linear region and t—/3 or ~7/¢ in the inertial region, and for the inertial terms of
t=3 or t77/¢ in the inertial region. Even the scaling of t~! for the nonlinear term in
the viscous region is as predicted by the new scaling theory (Kendon 2000). However,
within each run the quantities are falling more slowly than all these predictions.
Similarly 4 and A; do not scale within single runs in the same way as they scale
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between runs, except perhaps in the middle of the crossover region. (The same is true
of ¢, the dissipation rate, from which 4, is derived.)

At present, we have no simple explanation of these apparent scaling violations.
They could perhaps be a sign of subtle non-universalities of the type suggested by
Jury et al. (1999b), though it would certainly be premature to conclude this without
similar (though perhaps less severe) effects being detected in I(t). Another possibility,
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noted previously (§§ 11.5, 11.7) is that the we are not able, using the LB method with
these system sizes, to fully resolve the velocity gradients that arise.

On the other hand, our velocity derivatives do not appear to be completely lattice
controlled, since for example, in (11.1) one could then set Vo ~ v. This would give
¢ ~ L2, giving in the inertial regime A; ~ T'/® within each run (which is about right)
but in the viscous regime /; ~ T, and also 4 ~ T throughout both regimes, neither of
which is plausible for our data (see figure 18b). We have made various further attempts
to explain the data by assuming ‘composite’ scalings, based for example on the idea
that dissipation occurs mainly near the interface where velocity gradients might be
anomalously large (Vo ~ L/).1 In that case, one would have ¢ ~ (¢/L)L?/&?, where
the factor /L is the volume fraction of interface. Although none of these attempts
was successful, an explanation along these lines is not completely ruled out.

One further complicating factor is that, within the LB method, the fluid viscosity
is frequency dependent: the Navier—Stokes limit requires that velocities are not only
small (in lattice units) but also evolving sufficiently slowly. For very low viscosities, 7,
approaches 1/2 which means that the distribution function f; is over-relaxed (nearly
reversing sign at each time step), see (6.6). (In effect, the ‘natural’ viscosity scale in
LB is of order unity and the over-relaxation is used to create an unnaturally small
value.) This works successfully if accelerations are small but could result in a higher
dissipation rate than would be the case for a purely Newtonian fluid, especially in the
most inertial runs.

12. Conclusions

Our LB results for symmetric binary fluids, undergoing spinodal decomposition
after a deep quench, appear to confirm the dynamical scaling hypothesis, which
requires a universal time dependence of the structural length scale L when expressed
in reduced physical units as a function of time, I(t) (figure 9). We found no signs
of non-universality here, although some weak breakdown of it, as suggested by Jury
et al. (1999b), cannot be entirely ruled out. By exploitation of the expected scaling,
and careful parameter steering and validation tests to eliminate residual diffusion and
other unwanted effects, we achieved an [(¢) curve spanning seven decades of reduced
time ¢t and five of reduced length [. The [(f) curve asymptotes to | = bt at t € t"
(the viscous regime), with by ~ 0.072, and [ = b2/3t2/3 at t > t* (the inertial regime),
with by/3 ~ 1.0. From our reading of Guenoun et al. (1987), by is within 10% of
the most careful experimental measurements (albeit not for a deep quench) although
others (Laradji et al. 1996) extract an estimate about twice as large from the same
experimental results.

The crossover time, t* in reduced physical units, as defined by the interception of
the viscous and inertial asymptotes, is surprisingly large (t* ~ 10%). So is the width of
the crossover region (four decades). This may explain why the /3 region has never
yet been confirmed in laboratory experiments. The default assumption that ¢* is ‘of
order unity’ would mean that for fluid pairs typically studied (short-chain alcohols
and water for example), the inertial regime could be accessed at length scales of a

+ We note that in a very recent analysis, Solis & de la Cruz (2000) developed an heuristic
alternative to that of Kendon (2000) in which dissipation takes place in an (asymptotically) thin
layer around the interface rather than in the bulk. They argue that coarsening is limited by the
damping rate of capillary waves of wavelength L, and that this damping rate is unaffected by
nonlinearity; this gives [ ~ t*7. We find no evidence for this in our data. Using the oscillation
frequency instead of the linear damping rate recovers [ ~ t2/3,
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few microns, easily studied by light scattering. But in fact, to exit the crossover region
(at t* ~ 10%) one needs | = L/Ly > 10* which for typical fluids gives L of order
centimetres (and larger still for the near-critical quenches often used, see Guenoun
et al. (1987)). This requires direct visualization experiments, not light scattering, and
more importantly requires rigorous exclusion of thermal convection and gravitational
effects. The latter is likely to be possible only with extremely careful density matching,
or in microgravity, Cambon et al. (1997).

Our findings are less extreme when translated into Reynolds numbers. The con-
ventional definition of the Reynolds numbers for the spinodal problem is Rey = 1;
the crossover regime then spans 1 < Re, < 100 and the Reynolds number range we
actually achieved was 0.1 < Re, < 350. (Note that we see no sign of a saturating Rey
as predicted by Grant & Elder (1999), but cannot rule this out, at some value well
above 350.)

These figures are reduced further if the actual ratio R, of nonlinear to viscous terms
is used as the Reynolds number; our results span 0.01 < R, < 20. At the upper end of
this range, we have described in detail the first unambiguous simulations of a regime
in which the inertial terms in the Navier—Stokes equation are actually large compared
to the viscous ones; here we observed | ~ t*/3. However these simulations may still be
far from the asymptotic regime addressed by the scaling analysis of Kendon (2000), in
which ultimately one expects 4; < 4 < L for the Kolmogorov, Taylor and structural
length scales. But in fact, although A, is only slightly smaller than 4 even for our most
inertial run, our data for the inertial regime are already somewhat more consistent
with Kendon’s analysis than with the simpler (single length scale) scaling predictions
of Furukawa (1985).

In the viscous regime, we recovered the expected (I ~ t) scaling though this is
somewhat erratic and accompanied by an unexpected behaviour of the velocity
correlation length I, = L,/Ly (figure 11a) and possibly also the dissipation rate
(figure 17a). The first of these, at least, may be related to the presence of anomalous
long-range correlations of the velocity over length scales much larger than the domain
size L(T). These were detected numerically in our most viscous runs, and can be
explained simply by assuming that the interfaces contribute a random stress with
local correlations on scale L (see §10.1). It is quite possible that such effects have
arisen undetected in previous simulations of the viscous regime; in principle they
could lead to finite size problems arising long before the domain size L approaches
the size A of the simulation cell. Fortunately, the same does not appear to happen in
the inertial regime.

As well as through their differing domain growth laws (I ~ t or | ~ t?/?) the
viscous and inertial regimes can be distinguished by rather subtle changes in interface
geometry (evident through the structure factor and by visualization, with more thin
necks in the inertial case) and by much larger changes in the velocity statistics. For
example, the velocity PDF is significantly flatter for inertial than for viscous runs and
also there is significant skewness for longitudinal velocity derivatives in the inertial
regime. In that regime, we achieve results that show some of the characteristics of
a turbulent fluid, although non-Gaussian features are seen directly in the velocity
distribution as well in that of derivatives. This reflects the presence of microstructure
(interfaces), as well as some turbulence, in the fluid mixture.

The scaling of quantities involving velocity derivatives was found to give rea-
sonably continuous curves when mid-run values were plotted in reduced physical
units (e.g. figure 17a) but showed apparently systematic violations of the scaling
behaviour which that would imply, when analysed in detail within each run. This
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could indicate some physical non-universality, or some shortcoming of the LB code;
but equally it can be attributed to uncertainties over how to accurately estimate
derivatives that are not small on a lattice scale. The LB code is implicitly aware
of differences in the local velocity distributions but does not itself calculate velocity
derivatives. Therefore, when these derivatives are not small, there can be discrepancies
between their ‘effective’ values (as defined, e.g., through the actual dissipation rate
generated by the algorithm) and any estimate based on Fourier, or lattice difference,
data.

The fact that such ambiguities arise at all is an indication that our LB simulations
are close to the limits of accuracy acceptable for the fluid motion, since ideally all
gradients encountered in LB simulations should be small, not large, on the lattice scale.
It is interesting that they arise even when the Taylor and Kolmogorov microscales,
/4 and A4, are both significantly larger the lattice spacing; this perhaps suggests
heterogeneity of the velocity field that is stronger than in single-fluid homogeneous
turbulence. It may mean that, despite our best endeavours, we have not adequately
resolved the fluid motion at short length scales. Fortunately, according to the analysis
of Kendon (2000), the main requirement for observation of | ~ t*? in the inertial
regime is that the interface motion is decoupled (by fluid convection) from the
dissipation scale, and not that the latter is modelled with complete accuracy. The
reason is that, once the interface is decoupled, its motion is controlled by how
fast it feeds kinetic energy into the fluid at large scales; the precise details of the
dissipation further down the cascade has no further influence on the interfacial
dynamics. If so, statistics based on the domain growth law /() may be much more
robust than those for the fluid velocity and (especially) velocity derivatives, in the
inertial regime.

Very similar accuracy limits were also reached in the thermodynamic sector, where
we required narrow interfaces, with large composition gradients, to satisfy the conflict-
ing requirements of rapid interfacial equilibration and low residual diffusion. (This
gave interfacial tensions 10-15% different from nominal, with measurable lattice
anisotropy.) We have taken unusual care to analyse (and maintain under reasonable
control) the various sources of error. The reader has, we hope, enough information
to decide how much confidence to place in our various results.

It is interesting to ask how simulations might be taken further into the inertial
regime. If the analysis of Kendon (2000) is any guide, the ultimate asymptotic state
entails, computationally, resolution of the following scale hierarchy:

A< EKL Ly KAKL LA, (12.1)

with a the lattice spacing, or, more generally, a—> the density of degrees of freedom
in the simulation. A factor 3 between each of these length scales is roughly what
we achieve at 4 = 256. But a worthwhile improvement to give, say, a factor 10
between each would require 4 = 10°. For a three-dimensional system, this lies beyond
any foreseeable innovation in computational hardware if any current methodology is
used. Possibly the way forward would be to couple a coarse-grained algorithm (such
as large-eddy simulation) for the turbulent fluid to a moving interface; we leave this
to others to explore.

We would like to thank Alan Bray, Anatoly Malevanets, Alexander Wagner, Patrick
Warren, Julia Yeomans and Alistair Young for helpful discussions. Work funded in
part under EPSRC GR/M56234.
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Appendix A. Analysis of hydrodynamic modes

In this appendix we analyse the hydrodynamic modes for the LB hydrodynamic
equations (6.21)—(6.22). We take as our reference state one in which the fluid is at
rest with uniform concentration. In this case, to linear order in the perturbation
of the hydrodynamic fields the Navier—Stokes equation is satisfied, and only the
spurious terms in the balance equation for the order parameter remain. Specifically,
the equations we shall analyse are

p+V-(pv) =0,
vz—;V-@”’-l—szv-l-CV(V-v), (Al)
647 90) = (0= ) [V (Sv-0).

where v = n/p and { = (£ + 2n/3)/p are the kinematic shear and bulk viscosities,
respectively. Using (2.9), the last term in the third equation can be rewritten as

V-2" = cVp+ ¢V, (A2)

where ¢; is the speed of sound and u the chemical potential. This expression shows
that there is a spurious coupling between the order parameter and gradients of the
density field. Such a coupling can only be relevant when the binary mixture exhibits
compressibility. In terms of the deviations of the hydrodynamic fields with respect to
their equilibrium values, py = 1, ¢o, v = 0, equations (A 1) become

5p + poV - dv =0,

2
665—: = —;—SV5,0 — (A +3B@3)Vp + vV25v + (V(V - o), (A3)
0

5S¢+ ¢V - 50 = wn[(M — ¢3)(A + 3BP)V25¢ — 2 pV25pl,

where we have defined w; = 1, — % In Fourier space, this set of equations can be
expressed in matrix form, setting X = (6p,k * v,0¢,6v — kk - Sv/k?) as

0 —i 0 0
. —ic2k*  —(v+k? —iggak? 0
X — 1¢5 Y (V . C) ~1¢0a ) ) . X (A 4)
ol —ip  —wn(M —gak> 0
0 0 0 —vk?
where a = A + 3B¢$3. The hydrodynamic mode eigenvalues are correspondingly
;vl = —Vk2, (A 5)
1oy = iy [14 28 TS e g (1 4 Q200 (A6)
b3 = Flcg —— |V w — — |,
A a2 o 3+ ad))
M
g = —k2 222 (A7)

1+ agd/ct

The first mode corresponds to the propagation of shear waves, the subsequent
two modes are related to the propagation and damping of compressible momentum
waves, and the final mode is related to the diffusion of the order parameter. One
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can see that the presence of the spurious term in the convection—diffusion equation
does not qualitatively modify the propagation of the order parameter: it remains
diffusive. However, its eigenvalue depends on the compressibility of the fluid, and for
a compressible fluid there is then a reduction of diffusivity coming from the coupling
to sound waves. Such a coupling also modifies the propagation and damping of
longitudinal waves in the medium, so that these become a function of the order
parameter.

To whatever extent the compressibility of the fluid can be neglected, the addi-
tional coupling between the order parameter and the density becomes irrelevant, and
the expected diffusion coefficient for the convection—diffusion equation of the order
parameter is recovered.

Appendix B. Comparisons with other work

In order to compare our results with others’ published work, a similar scaling
procedure must be applied to place their data onto the universal scaling plot in
figure 9. This is only possible for work reported in sufficient detail to enable values
for Ly and Ty to be calculated. Recent three-dimensional work where comparison is
possible includes that of Bastea & Lebowitz (1997), Laradji et al. (1996), Appert et
al. (1995), and Jury et al. (1999b). These four sets of results are shown along with
the LB data in figure 19. Simulations of three-dimensional spinodal decomposition
with hydrodynamics for which quantitative comparisons were not possible include
Koga & Kawasaki (1991), Puri & Diinweg (1992), and Alexander et al. (1993), all of
whom claimed to have simulated the linear regime, and Shinozaki & Oono (1991),
Ma et al. (1992) and Lookman et al. (1996). The last two claimed to have simulated
the inertial regime but offered no evidence beyond their fitted exponent values for
definitely having inertial rather than diffusive effects.

The four studies for which detailed numerical comparisons are possible will now
be considered in turn.

B.1. Bastea & Lebowitz (1997)

Bastea & Lebowitz (1997) carried out a three-dimensional simulation containing
about 1.4 x 10° particles whose motion was described mesoscopically by Boltzmann—
Vlasov equations. They combined direct simulation Monte Carlo methods for the
short-range interaction with particle-in-cell methods for long-range interactions. The
fluid system is relatively low density; they describe it as a gas—gas phase separation.
The necessary fitting and scaling for the results reported by Bastea & Lebowitz was
done by Jury et al. (1999b).

On the universal scaling plot, figure 19, the supposedly viscous-regime portion of
the data from Bastea & Lebowitz is shown as circles. It lies in the correct (lower left)
region of the graph, but well to the left of any of the LB results. The scaled value
of the fit parameter, by = v/(Ly/Ty), from the refitting by Jury et al. is by = 0.3.
This compares with the considerably smaller values from the LB results in the linear
region. The dynamical scaling hypothesis requires however that b; should be universal
to all systems in the viscous regime. The high reported b; leads us to suspect residual
diffusion. Bastea & Lebowitz do not report the diffusion rate in their system in a
form that can be used to apply the analysis of §8.3, but test LB runs have been done
with high diffusion rates that produce LB data sets very similar to those of Bastea &
Lebowitz. Two such test runs, Run024 and Run010, are shown in figure 20.

In figure 20(a), Run024 is compared with Run028, one of the runs in table 2.
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FIGURE 19. Scaling plot in reduced variables (L/Lg, T/Tp). Solid lines (left to right) are LB 256°
data from table 2 (top to bottom). Also shown are results from other published work: [J, Appert
et al. (1995); A, Laradji et al. (1996); O, Bastea & Lebowitz (1997). Inset: DPD data of Jury et al.
(1999b) (solid lines) with one LB data set (Lo = 0.15, 4) repeated for comparison.

Run024 has the same parameters as Run028 except for the mobility, which is eight
times higher. Run024 fits a free exponent of o = 0.85, which is similar to Run(022
(also in the linear region). However, the lack of an initial flat diffusive region (also
absent in Bastea & Lebowitz 1997) strongly suggests the diffusion is too strong for
uncontaminated linear growth to be observed within the attainable system size. A
linear fit to the upper part of the data produces a scaled value of by = 0.082, compared
with 0.073 for Run028.

In figure 20(b), Run010 has a value of Ly = 381, larger than for any of the runs
finally used by us, see table 3. This should put it even further into the linear region
than the rest of the runs. However, a fit with a free exponent produces o = 0.7. A
linear fit to the upper part of the data produces a value for the scaled fit parameter of
b; = 0.32, 1.e. about the same as the data from Bastea & Lebowitz, which this curve
resembles. It seems likely, therefore, that the data from Bastea & Lebowitz (1997)
has strong residual diffusion, and the results they present are a mixture of linear and
diffusive growth.

B.2. Laradji, Toxvaerd & Mouritsen (1996 )

Laradji et al. (1996) used a large-scale molecular dynamics simulation of a Lennard-
Jones model with 343000 particles with a deep quench. The necessary fitting and
scaling for the data of Laradji et al. was done by Jury et al. (1999b). The results
are shown on figure 19 as triangles lying, like those of Bastea & Lebowitz (1997),
to the left of the LB data towards the lower left corner, again in the viscous regime
according to the LB analysis. Laradji et al. claimed their results confirmed the linear
scaling, but their value of the scaled fit parameter, by = 0.13, is again higher than
ours. However, it is well within the range of values spanned by the over-diffusive LB
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FIGURE 20. (a) 256°, Ly = 36, Run024 with M = 0.8 compared with Run028 (M = 0.1).
(b) Run010, 1283, Lo = 381, M = 0.5.

runs shown in figure 20 (b; = 0.082,0.32). The shape of their L(T) curve matches
that of Run024 in figure 20(a), i.e. there is no initial diffusive plateau before domain
growth begins. In LB data this was always a sign that the run had too high a mobility
and significant contamination by residual diffusion.

B.3. Appert, Olson, Rothman & Zaleski (1995)

Appert et al. (1995) used a three-dimensional lattice gas simulation to simulate
spinodal decomposition. Their largest system size was 128* and they also used 64° to



Inertial effects in spinodal decomposition 201

test for finite size effects; they rejected data with L > A/2, whereas we saw significant
finite size effects by this stage (and applied the stricter condition, L < A/4). They
claimed a fitted exponent of o ~ 2/3, which, if correct, would put their results in the
inertial regime. Taking the relevant interval of their data, refitting it by our method
(giving an exponent o = 0.62) and converting into reduced physical units gives the
dataset (squares) on figure 19. This shows that, if our LB data are correct, the data of
Appert et al. are actually in the crossover region. They appear to be asymptoting onto
the LB data from above, which again suggests significant residual diffusion, giving too
low a value for the fitted exponent. As with the data of Bastea & Lebowitz (1997) and
Laradji et al. (1996), the L(T) plot is lacking the initial diffusive plateau, an absence
that we found was invariably associated with strong residual diffusion within LB.

B.4. Jury, Bladon, Krishna & Cates (1999b)

Jury et al. (1999b) carried out a series of simulations of a symmetric, binary fluid
mixture using the DPD (dissipative particle dynamics) method with 10° particles
and a deep quench. (The DPD algorithm combines soft interparticle repulsions with
pairwise damping of interparticle velocities and pairwise random forces.) In terms of
the range of domain scales that can be probed, as a multiple of the interfacial width,
these are roughly equivalent to our 1283 LB runs. These authors found that each
data set was well fitted by a linear scaling, L = v(T — T},), but with a systematic
increase of by = v/(Lgy/Ty) upon moving from upper right to lower left in the universal
scaling plot, see figure 19 (inset). These seven data sets have a range of L, values,
0.29 < Ly < 0.013, which places them all firmly in the crossover region found in the
LB results, between Run029 (Lo = 0.95) and Run030 (L¢ = 0.01).

Jury et al. suggested two alternative interpretations of their own data and that of
Laradji et al. (1996) and Bastea & Lebowitz (1997), to explain the observed linear
scaling within each run, but lack of consistency in the prefactor, b;. The first was a
possible non-universality arising from the physics of pinchoff. The second was that
all data sets formed part of an extremely broad crossover region. This explains the
observed trend b; ~ t7°2, but not the linear scaling within each run. However, Jury et
al. noted the possibility of ‘dangerous’ finite size effects within their data, which was
truncated at L, = A4/2. Our LB results support the latter explanation for the DPD
data, with a separate or additional reason (residual diffusion) for rejecting the other
datasets. Unlike these, all the data sets of Jury et al. do lie very close to the LB results,
see figure 19 (inset). Moreover, the DPD data show a diffusive plateau prior to the
onset of the apparent linear regime, consistent with low residual diffusion levels.

Since the DPD simulation method is very different from the LB one, the corre-
spondence of the two sets of results lends broad support to the idea of a universal
scaling, although the fact that each DPD run is best fit by a locally linear growth
law is not consistent with this. Based on our LB results, we are inclined attribute
the latter to finite size effects, which would certainly be large enough to spoil our
nearest equivalent runs (1283 with L,.. = 64). However, we cannot rule out other
explanations as offered by Jury et al. Larger DPD runs, and/or a series of LB runs,
giving strongly overlapping datasets in a narrow window of the [(¢) like the DPD
results (figure 19, inset), might shed light on this.
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